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Calibrating Dynamic Traffic Assignment Models by Parallel Search
using Active-CMA-ES

Jaebak Hwang' and Sungahn Ko' and Tsz-Chiu Au!

Abstract— The widespread deployment of inductive-loop traf-
fic detectors allows us to obtain a massive amount of traffic
data in real time. A key step of utilizing the data is to use the
data to fit a traffic model. Simultaneous perturbation stochastic
approximation (SPSA) and its variants are popular techniques
for the calibration of dynamic traffic assignment (DTA) models
by searching for Origin-Destination (OD) matrices that fit the
data. However, the performance of SPSA cannot scale with
modern multi-core CPU architectures due to its sequential
nature. This paper proposes the use of active covariance matrix
adaptation evolution strategy (Active-CMA-ES) for optimizing
OD matrices in microscopic traffic simulation. CMA-ES is a
blackbox optimization algorithm that was found highly effective
in many domains. According to our case study in Ulsan, South
Korea, Active-CMA-ES outperforms Restart-WSPSA, one of
the best SPSA algorithms, in terms of the calibration error and
the running time. Moreover, the running time of Active-CMA-
ES decreases as the number of parallel simulation processes
increases.

I. INTRODUCTION

Nowadays, we can obtain many traffic data in real time
from inductive loop sensors installed on roads. Data-driven
approaches for analyzing traffic flows could potentially be
more accurate than traditional macroscopic traffic flow mod-
eling. The key step of utilizing the data is to use the data
to fit a traffic model such as a microscopic traffic simulation
model. Dynamic traffic assignment (DTA) models have been
used to compute the equilibrium traffic flow in a traffic
simulation. For example, PTV Vissim! uses a module called
Dynamic Assignment to iteratively compute the traffic flow
in equilibrium given a map and an OD matrix. To calibrate
a DTA model, a calibration algorithm adjusts the OD matrix
until the equilibrium traffic flow matches the collected data.

Simultaneous perturbation stochastic —approximation
(SPSA) is a popular approach for calibrating DTA models.
Lu Lu et al. [1] proposed weighted SPSA (W-SPSA) for
estimating OD matrices in dynamic settings in which the
OD matrix is assumed to be non-static, and the DTA
estimation algorithm has to estimate several OD matrices in
a row for consecutive time intervals. Huan Yang et al. [2]
presented a modified SPSA algorithm called Restart-SPSA,
which improves SPSA by a restart strategy for dynamic
origin-destination estimation. Both approaches showed that
SPSA could be quite effective in calibrating DTA models.
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However, they are too slow for some applications in which
we need to estimate the traffic flow as quickly as possible.
Since both methods use gradient descent in which the search
steps must be executed in sequential order, it is difficult to
reduce their running times.

In this paper, we propose to replace SPSA by active co-
variance matrix adaptation evolution strategy (Active-CMA-
ES) [3] in calibrating DTA models. CMA-ES, proposed
by Hansen and Ostermeier, is an evolution strategy for
blackbox optimization [4]. CMA-ES is highly effective in
many application domains, including robotics [5]. Like the
classical evolution strategies, CMA-ES evolves a popula-
tion of solutions in parallel, making it suitable for parallel
processing in modern multi-core CPU architectures. Some
previous works have already used evolution algorithms or
genetic algorithms for calibrating traffic simulation [6], [7].
However, their work address slightly different calibration
problems and their focus are not on achieving parallel
search. Moreover, CMA-ES could outperform these classical
evolution strategies, as demonstrated in other application
domains. Active-CMA-ES is a modified version of CMA-
ES with new update rules for covariance matrices, making
it more suitable for noisy, non-smooth, non-continuous, and
non-convex blackbox optimization problems, including our
DTA calibration problem.

This paper is organized as follows. After presenting the re-
lated work in Sec. II, we define the DTA calibration problem
in Sec. III and describe Restart-WSPSA and Active-CMA-
ES in Sec. IV. Then we present the results of experiments
that evaluate Active-CMA-ES using the traffic data collected
by inductive loop sensors in the downtown of Ulsan, a city
in South Korea, in Sec. V. Lastly, we conclude in Sec. VI.

II. RELATED WORK

One of the early works on the calibration of traffic models
was based on genetic algorithms (GA) [7], [8]. However,
as the size of OD matrices increases, GA requires a large
population per generation and a larger number of iterations to
converge to a solution. Thus, these early attempts were later
overshadowed by gradient-descent methods, notably simul-
taneous perturbation stochastic approximation (SPSA) [9]-
[11]. SPSA is a derivative-free optimization algorithm that
estimates gradients by sampling, making it suitable for the
calibration of traffic models which have no obvious derivative
functions. When compared with GA, SPSA requires less
computation time per iteration and can converge much faster.
Huan Yang et al. [2] presented Restart-SPSA, which applies
a restart strategy to improve the performance of SPSA. Lu
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Lu et al. [1] proposed Weighted SPSA (W-SPSA), which
utilizes the correlation between OD matrices and the ground
truth data to generate a weight matrix that gives more weight
to certain elements in the OD matrix during gradient descent.

One drawback of SPSA is that there is no obvious way
to parallelize its search process. In this paper, we con-
sider covariance matrix adaptation evolution strategy (CMA-
ES) [4], a famous blackbox optimization algorithm that has
been quite successful in hundreds of applications [12]. Like
GA, CMA-ES maintains a pool of solution candidates in
each generation, and the evaluation of the fitness of the
candidates can be done in parallel due to the lack of depen-
dency among the candidates. Although CMA-ES takes more
time to evolve one generation when compared with SPSA,
CMA-ES is much easier than SPSA in escaping from local
minima since the gradient are estimated by multiple sample
points. Bojan Kostic et al. [13] compared SPSA, CMA-ES,
and Nelder-Mead’s Simplex algorithm (NMSIM) [14], and
showed that both SPSA and CMA-ES are much faster than
NMSIM when calibrating a macroscopic simulator based on
traffic equilibrium for first-order dynamic traffic simulation
models [15], [16]. In this paper, we calibrate a microscopic
traffic simulator by Active-CMA-ES [3], an enhanced version
of CMA-ES with faster convergence by using negative results
to update the covariance matrix.

ITII. THE DTA CALIBRATION PROBLEM

We define the calibration problem for DTA models as
in [2]. The calibration process is comprised of a sequence
of iterations, each of which aims to compute an estimated
OD matrix that minimizes an objective function as defined
below. Suppose there are M lane groups with inductive loop
sensors in a traffic network (e.g., the sensors in Fig. 1). Let
yi(7) be the number of vehicles detected by the inductive
loop sensors in the lane group i in the time interval 7. Then
Y(7) = [y1(7),y2(%),...,ym(7)]" is the ground truth for the
calibration. Suppose there are N OD pairs in the OD matrix.
Let X;(7) = [x1(7),%2(7),...,xnv(7)]” be the estimated OD
matrix in the k iteration, where x’]‘-(‘c) is the traffic demand of
the jth OD pair in 7. Let ¥;(7) = % (1), 5 (7), ..., 5, (0)]"
be a vector of the estimated numbers of vehicles in the lane
groups in time interval T according to X; (7). The objective
function Z(-) in the k iteration is:

min_ Z(Xi11(7)) = 01 E (X1 (7), Xk (7)) +
Xjey1(1)20 (1)
0E (Yi41(1),Y (1))

where E(V|,V,) = ||Vi —V2|| is the root mean square error
between any two vectors V| and V,, and w; + @, =1 for
w1, > 0. Eq. 1 is a weighted sum of two terms. The first
term is used to reduce the change of the estimated OD matrix
after each iteration, and the second term is used to minimize
the error between the estimated traffic flows of each lane
group and the ground truth. Typically, ®; is much smaller
than @, so that the accuracy of the estimated traffic flows has
a higher weight. In our experiments, @; =0.1 and w, =0.9.

Fig. 1: The map of a region in the downtown of Ulsan in
South Korea. The grey roads are the road segments that
traffic were simulated in PTV Vissim in our experiments.
The blue boxes are the entries and the exits to the region.
The red boxes indicate the physical locations of the inductive
loop sensors. All but one red box contain two inductive loop
sensors, one for each direction of the road. The red box
pointed by an arrow contains one inductive loop sensor only.

IV. THE CALIBRATION ALGORITHMS

In this section, we describe two calibration algorithms:
Restart-WSPSA and Active-CMA-ES.

A. Restart-SPSA

SPSA is a gradient descent algorithm that starts from
an initial point of the parameter vector and then updates
the parameter by using gradient approximation until the
error converges to zero. Let X; be the estimated vector of
parameters in the kth iteration. The iterative process of the
SPSA algorithm is based on the following equation:

X1 = Xk — argr(Xi)

where g;(X;) is the estimated gradient column vector at X;,
and ay, is a small positive number as the gain factor of g (Xk)
In other words, a; is the main factor of the step size per
iteration. In each iteration, the gradient is estimated by:

-1
Akl]
s Z(Xi + i) — Z(Xy — crA Ay
gk(Xk):( ( k k k)ZCk ( k k k)) : 2)
.
AkN

where 1) A is a N x 1 vector those elements are generated
by the Bernoulli distribution with the values of £1, 2) N is
the dimension of X, and 3) ¢ is a positive number called the
gain factor of A;. Both a; and ¢; get smaller as k increases
according to the following equations:

ax=a/(A+k+1)* 3)
cx=c/(k+1)" “4)



where a, ¢, o, ¥, and A are parameters that are tuned
manually. According to [10], we can pick a = 0.602 and
Y= 0.101. If a is too large, the oscillation of the estimated
parameter vector occurs, and the algorithm cannot converge.
If a is too small, the algorithm will converge slowly and may
easily be trapped at local minima.

Restart Strategy: Restart-SPSA is an extension to SPSA
with the following restart strategy. First, Restart-SPSA runs
SPSA with a large value of a for a given number of iterations.
Let X; be the best parameter in the execution of SPSA. Then
Restart-SPSA reruns SPSA from scratch with 1) a smaller
value of a and 2) X; as the initial search point. Let X,é be
the best parameter in the second execution of SPSA. Then
Restart-SPSA returns Y,ﬁ as the solution. Typically, Restart-
SPSA can find better solutions than SPSA.

B. Restart-WSPSA

Weighted-SPSA (W-SPSA) was introduced in [1]. The
idea is to modify the estimated gradient in Eq. 2 by a weight
matrix W such that the ith element in the gradient becomes
larger (or smaller) if the ith element in X; has a stronger (or
weaker) influence to the convergence of X. More precisely,
W-SPSA modifies Eq. 2 by computing the ith element in
&x(X) using the following equation instead:

A Z(Xk+ck5k) _Z(Xk_ckSk)

8i(Xi) = 200 Wi, &)

where Z(0) and W; are computed by the following equations:

s ooy (Y (X)) =Y (X)) @((Y (%) — ¥ (X4))
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where Y (X}) is the observed traffic measurements with OD
matrix X;, ¥ (X;) is the simulated measurements, X;_; is the
prior value of parameters, wi and w, are constants, and d; ;
is the increment or decrement of the jth observation when
the ith element increases. In [1], the same weight matrix
W is used in all time intervals. However, in this paper,
we generated different W in each time interval, using the
calibrated OD matrix in the previous time interval. We also
apply the restart strategy to W-SPSA to form Restart-WSPSA
as in [2].

C. Active-CMA-ES

CMA-ES is a blackbox optimization algorithm based on
evolution strategies. Active-CMA-ES is an enhanced version
of CMA-ES [3]. CMA-ES generates A offspring based on
mutation strength ¢ and n X n covariance matrix C from
the search point 0, and updates C using n-dimension search
path vectors ps and p.. The search path vectors accumulate
the information of high-ranking offsprings. Active-CMA-ES
also uses low-ranking offsprings for updating the covariance
matrix C negatively. This negative update makes CMA-ES
adaptation much faster. The search path vectors are initialized
to zero, and the covariance matrix is initialized to a unity

matrix. More precisely, Active-CMA-ES proceeds according
to the following steps:

1) For N number of parameters, C = BD(BD)" where n x n
matrix B is normalized eigenvectors of C, and D is a
diagonal n x n matrix. The diagonal elements are the
square roots of the eigenvalues of C.

2) Generate an offspring X based on the following equa-
tion:

X; =0+ 0BDz, (8)

where z; is a mutation vector with n elements, generated
from a normal distribution, for 1 <i<A.

3) Calculate the loss Z(X;) and sort the results by z.3,
where k; A means the index of the kth ranked result in
the population. Compute the average of y rank mutation
vectors:

1 E
E'=—Y 7 ©9)
K=
In this paper, we set 4t = A/2.
4) Update the search point:
0 = 6 + 6BDE*
5) Update the search paths:

pe=(1—cc)pe++/tiec(2—cc)BDE*  (10)
po = (1 —co)ps+/lco(2—co)BE® (11)
where cc =cs = ﬁ.
6) Update the covariance matrix:
C= (1 _Ccov>C+Ccovpcpg+ﬁEa (12)
where
| ¢ T 1 X T T
E=BD| — Z LAl — Z LA Zge BD
M= L |
13)
d
an )
Ceov = =,
cov (n + \/5)2
where 3 is set according to the function type.
7) Update the mutation strength:
-X
c= Gexp(i‘lpcn ), (14)

dsX,

where X, = v/n(1 —1/(4n) +1/(21n?)) is an approx-
imation of the expectation value of the length of a
random vector with a normal distribution and ds =
1+ 1/cs is the damping factor.
In Eq. 13, the term ﬁZg:]zk;;Lz,{;l denotes the positive
adaptation based on the high-ranking offsprings from rank
1 to u, and the term —izllefwrlzk;,lzzﬂ denotes the
negative adaptation based on the low-ranking offsprings from
A—p+1to A
CMA-ES and Active-CMA-ES have many parameters, but
most of them are set by some recommended equations. In
most cases, we only need to tune o. For more information
about how to set the parameters, please refer to [17].



V. EXPERIMENTAL EVALUATION

This section presents a case study that compares the
performance of Restart-WSPSA and Active-CMA-ES when
calibrating the OD-matrix in a traffic model.

A. Experimental Settings

Our case study focuses on a region in the downtown of Ul-
san, a city in South Korea. As shown in Fig. 1, the 1.5 km X
1.1 km region has 9 intersections and 24 road segments. All
intersections are managed by traffic signals. We obtained the
traffic signals data from Korean National Police Agency”. We
used PTV Vissim (version 11), a widely used microscopic
traffic simulator, with the Dynamic Assignment module for
DTA calculation. There are 31 inductive loop sensors in the
data. We collected the inductive loop data (i.e., the number of
vehicles passing the inductive loops) of the four 15-minute
time intervals from 7:00AM to 8:00AM on December 12,
2015 from the Road Traffic Authority of Ulsan?.

The OD matrix consists of 12 x 12 entries since there
are 12 entries and 12 exits in the region. The calibration
algorithms have to tune 12 x 11 parameters in the OD matrix.
In the first time interval, the initial value of each element in
the OD matrix is half of the maximum value of each element,
which is determined manually based on historical traffic
records. In the other time interval, the initial OD matrix is
the calibrated OD matrix in the previous time interval.

The experiments were conducted on a computer with an
Intel Core 17 8700K CPU with 32GB RAM. The CPU has six
cores, and thus it can run six traffic simulations in parallel.
Nonetheless, PTV Vissim can utilize at most four cores
in parallel due to license issues. Both Restart-WSPSA and
Active-CMA-ES were implemented in Python 3, and they
start and control the simulations in PTV Vissim by the COM
interface. We used pycma* to implement Active-CMA-ES.
The population size of Active-CMA-ES is 16.

To increase the performance of Restart-WSPSA, we op-
timized the W-matrix in each time interval by using the
calibrated OD matrix in the previous time interval. According
to [10], we set o = 0.602 and y = 0.101 in WSPSA.
In addition, we restarted WSPSA every 150 generations.
We also estimated the extra loss measurement for each
iteration by an additional simulation and then rejected the
iteration if the extra loss measurement is larger than the
previous iteration loss measurement by 20%. According to
[11], the rejection can speed up the convergence of Restart-
WSPSA. Hence, each iteration in Restart-WSPSA has three
simulations, two for calculating the gradient for SPSA and
one for loss measurement. Note that the third simulation must
be run after the first two simulations.

B. Calibration Errors vs. the Number of Simulations

First, we looked at the RMSE of the traffic volume on
the road segments with inductive loop sensors. In our exper-
iment, we gave both Restart-WSPSA and Active-CMA-ES a

2https://www.police.go.kr/eng/main.do
3https://utrhub.its.ulsan.kr
4https://github.com/CMA-ES/pycma

budget of 900 simulations they can run using PTV Vissim. In
each simulation, PTV Vissim used the Dynamic Assignment
module to iteratively estimate the traffic flow given an OD
matrix until it reaches an equilibrium. Then we calculated
the RMSE based on the traffic flow at the equilibrium and
the ground truth. We kept tracking the change of RMSE as
the algorithms used more and more simulations to refine the
OD matrix. The results are shown in Figures 2(a), 2(c), 2(e),
and 2(g). Although Restart-WSPSA ran two simulations in
parallel and Active-CMA-ES ran four simulations in parallel,
these figures report the running time as if the simulations
were run sequentially one by one.

According to the four graphs on the left of Fig. 2, Active-
CMA-ES had a higher RMSE at the beginning. But Active-
CMA-ES’s performance increased rapidly and eventually
outperformed Restart-WSPSA in all time intervals. The rea-
son for the poor initial performance is that Active-CMA-ES
requires 16 simulations for each generation while Restart-
WSPSA requires 3 simulations for each iteration. Hence,
Active-CMA-ES needs more simulations to make progress
initially. However, Active-CMA-ES eventually outperformed
Restart-WSPSA since Active-CMA-ES is more capable of
escaping the local minima.

Table I summaries the RMSE for each interval of Restart-
WSPSA and Active-CMA-ES after running 900 simulations.
According to the table, the performance gap between Restart-
WSPSA and Active-CMA-ES increases as the time interval
increases. Active-CMA-ES’s superior performance is more
noticeable in the higher time intervals because the error in a
time interval can carry over to the next time interval.

TABLE I: The RMSE for each interval of Restart-WSPSA
and Active-CMA-ES after running 900 simulations.

Interval 1st 2nd 3rd 4th
Restart-WSPSA  9.755 16.629 15.142 20.484
Active-CMA-ES 9.167 9.958 10.058 12.675

The advantage of Active-CMA-ES is prominent when
more simulations can run in parallel. Therefore, we analyzed
the data we collected in the experiment to estimate the total
running time of the algorithms as the number of CPU cores
used by the algorithms in parallel increases. We recorded the
running time of every simulation in Active-CMA-ES. Then
we estimated the total running time when there are more
than 4 CPU cores by overlapping some of the simulations.
Note that the running time of both Active-CMA-ES and
Restart-WSPSA were dominated by the simulation times,
and the running times of other computations were negligible.
Hence, we can estimate the total running time by greedily
allocating simulations in each generation to the CPU cores.
We implemented a discrete event simulation to simulate the
execution of Active-CMA-ES when the number of cores
is 8 and 16. The results are shown in Figures 2(b), 2(d),
2(f), and 2(h). According to these figures, as the number of
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Fig. 2: The performance of Restart-WSPSA and Active-CMS-ES in each of the four time intervals when the traffic
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CPU cores increases, the total running time of Active-CMA-
ES drops tremendously, and the initial poor performance of
Active-CMA-ES disappears. Therefore, Active-CMA-ES can
be an effective parallel search algorithm for calibrating DTA
models.

C. Calibration Errors of Individual Roads

RMSE measures the error of the calibration of the entire
model at once. However, RMSE cannot tell exactly how well
the traffic flow at each inductive loop sensor readings is cal-
ibrated. Therefore, we examined the observed vehicle counts
of the roads at each inductive loop sensor at every interval
and compared them with the predicted values generated by
Restart-WSPSA and Active-CMA-ES. Fig. 3 is a scatter plot
of the vehicle counts of the roads at which the inductive loop
sensors are located in the fourth time interval. There are 31
red dots and 31 blue dots. The x-axis is the observed vehicle
count (i.e., the ground truth), and the y-axis is the predicted
vehicle count (i.e., the simulated count) after calibration.
Clearly, the observed counts of both Restart-WSPSA and
Active-CMA-ES are the same. The difference between an
observed count of a sensor and the corresponding simulated
count is the calibration error of the traffic flow at the sensor.

As can be seen, most of the calibration errors are quite
small. There are a few outliners, but they appear to occur
randomly on different roads. In general, there is a strong
linear relationship between the observed counts and the
simulated counts for both Restart-WSPSA and Active-CMA-
ES. However, Active-CMA-ES performed slightly better as
the red points are closer to the diagonal.

VI. SUMMARY AND FUTURE WORK

To utilize real-time traffic data to calibrate a traffic model
as quickly as possible, we propose to use Active-CMA-
ES, which can utilize modern multi-core computer archi-
tecture to conduct parallel search. Our experiments showed
that Active-CMA-ES outperforms Restart-WSPSA, the best
SPSA algorithm in the literature. We have also demonstrated
the scalability of Active-CMA-ES as the number of CPU
cores increases. Although Active-CMA-ES outperforms the

existing calibration algorithms, it has not yet achieved the
real-time calibration of traffic models. If one can calibrate a
traffic model in real time, some important applications such
as real-time traffic rerouting for congestion prevention can
be more effective. In the future, we intend to extend Active-
CMA-ES for incremental calibration of traffic models over
time.
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