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Abstract— One of the most appealing applications of drone
swarms is drone light shows, in which a group of drones
displays an animation by showing a sequence of light patterns
in the sky. In this paper, we consider using drone swarms as
video game platforms and utilize planning techniques to display
pixels in animations correctly while providing a fast response
to user inputs. We devise a new sampling algorithm to solve a
contingency formation planning problem, which aims to find
a contingency formation plan such that drones can always
move to the correct positions to display every possible future
frame regardless of the user inputs in the future. The algorithm
provides interactivity by preemptively relocating hidden drones,
which move in stealth mode to the locations of all possible future
frames. Our experiments show that the size of the frame buffer
and the ratio between the number of drones and the number
of pixels can greatly affect the performance of our system.

I. INTRODUCTION

Drone light shows have emerged as a new kind of en-
tertainment for celebrations and festivals worldwide. Given
the success of drone light shows, we go one step further
to consider drone swarms as video game platforms. Some
existing drone light shows have already demonstrated the
potential of using drone swarms for drone-swarm-based
video games. Fig. 1 shows a drone light show for promoting
the new Super Mario Bros. movie. Fig. 2 is a scene in an
Ultraman drone light show at Kobe Meriken Park in Japan.
While both drone light shows suggest the possibility of using
drone swarms for video games, they also highlight some
technical challenges in such platforms. The most notable
challenge is the low frame rate since drones take time to
physically move to the correct positions to display a scene,
causing difficulties in maintaining an illusion of animations
for video games. Moreover, these drone light shows are not
interactive—no human player could control the characters.

This paper attempts to address these challenges by con-
sidering the formation planning problem in drone-swarm-
based video games. We describe a framework that shows
animations in real time by planning the motion of the drones
ahead of time. Here, the term “real-time” refers to the guar-
antee that pixels can be displayed correctly subject to time
constraints (e.g., frames can be displayed at specific times).
To deal with interactivity, we propose generating contingency
formation plans such that no matter what the user inputs
are, the drone swarm can still display the correct scenes
in response to the user inputs. Ultimately, we define the
pixel contingency formation planning problem that captures
the essence of these challenges and devise a new planning
algorithm to solve the problem.
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Fig. 1: Mario jumps to
hit a bonus brick.3

Fig. 2: Ultraman throws a laser
knife at a monster.4

In summary, the contributions of this paper are:
• We define the pixel contingency formation planning

problem for interactive drone light shows with real-time
performance guarantees in response to user inputs.

• We devise an algorithm called SPICOMP, a sampling-
based algorithm for pixel contingency formation plan-
ning. SPICOMP is the first formation planning algo-
rithm that deals with contingency in drone light shows.

• We describe the architecture of our interactive drone
light show system, which is a pipeline connecting user’s
commands to formation plans that control a drone
swarm to display light patterns.

• Our experiments show that the frame buffer’s size and
the number of drones relative to the number of pixels
can greatly affect the performance of our system.

This paper is organized as follows. After presenting the
related work in Sec. II and the key features of drone-
swarm-based video games in Sec. III, we define the planning
problem in Sec. IV, describe the frame controller in Sec. V,
and present SPICOMP in Sec VI. Finally, we present the
experimental results in Sec. VII and conclude in Sec. VIII.

II. RELATED WORK
Some research and commercial endeavors have already

capitalized on utilizing drone swarms for entertainment. Kim
and Landay introduced Aeroquake, an augmented dance
system [1]. Kljun et al. introduced StreetGamesz, a gaming
platform in which drones carry projectors to project game-
playing elements [2]. Kim et al. presented a survey of drone
use for entertainment and augmented/virtual reality [3]. In
recent years, research on drone light shows has gained
traction. Du et al. presented a framework for designing chore-
ographies comprised of swarm motion primitives [4]. You et
al. discussed the use of rotating LED display technology in

3https://www.youtube.com/watch?v=shyKVbrbtnA
4https://www.youtube.com/watch?v=a-fOhLjMI0U



drone light shows [5]. Mao et al. presented a drone swarm
light show design platform for K-12 children [6]. Weng et al.
described a multi-view approach for drone light shows [7].

Drone light shows are multirobot systems with a special
focus on formation planning. Yu and LaValle proposed
planning optimal paths for multiple robots using integer
linear programming models that optimize for makespan [8],
[9]. Yang et al. wrote a survey on the UAV formation
trajectory planning algorithms [10]. Our pixel formation
planning problem is similar to the formation reconfiguration
problem, which aims to find a formation plan to transform an
initial formation configuration into a final configuration [11].
By contrast, our work focuses on pixel formation instead of
drone formation. A popular approach for formation recon-
figuration is the artificial potential field (APF) method [12],
[13]. Some works tried to overcome the oscillation and
gridlock problem in the APF methods [14], [15]. Nar and
Kotecha described a constrained Hungarian method called
CHungSDA for drone assignment to waypoints in drone light
shows [16]. Huang et al. presented a Hungarian algorithm for
graph-based dynamic task assignment problems in UAV light
shows [17]. However, these works did not acknowledge the
special roles played by hidden drones in drone light shows.

III. DRONE-SWARM-BASED VIDEO GAMES

Our drone-swarm-based video game platforms adopt the
same hardware for drone light shows. Each drone is equipped
with an LED light bulb that can shine a wide range of
color light in all directions. When a drone turns on its
LED light, it shows a pixel. A frame is a collection of
pixels that appear at the same time. There are software tools
(e.g., Skybrush) for designing drone light shows, but they
do not automatically decide when drones should go dark and
become hidden. Hidden drones can move in stealth mode and
suddenly appear at remote locations in a scene. Interactivity
can be achieved by preemptively relocating hidden drones to
the locations of all possible future frames and then turning
on the LED lights of the frame chosen by the user.

There are two ways to move a pixel between two con-
secutive frames: pixel trajectory tracking and pixel hopping.
In pixel trajectory tracking, a drone moves along a trajectory
while the LED light is on. In pixel hopping, a drone switches
off its LED light, and an adjacent drone turns on its LED
light as if the pixel hops from one drone to another. Pixel
trajectory tracking can provide a smooth animation of the
characters, while pixel hopping is used to show fast-moving
objects. However, pixel hopping creates some discontinuity
in the apparent trajectories of the hopping pixels.

IV. PIXEL FORMATION PLANNING PROBLEMS

Let V be a set of drones {υ1, υ2, . . . , υn}. A pose ρ for
a drone υ ∈ V is the position and the orientation of υ
in the world frame, i.e., ρ is (x, y, z, θx, θy, θz), where the
position (x, y, z) is the coordinate of the center of υ and
θx, θy , and θz are the roll, pitch, and yaw rotations of υ,
respectively. A state s of a drone extends ρ to include the
internal states of the drone relevant to motion planning. If we

are using velocity-based controllers to control a drone, s is
(x, y, z, θx, θy, θz, vx, vy, vz) where (vx, vy, vz) is the veloc-
ity of the drone. Given a state s, we denote the pose by ρ[s] =
(x, y, z, θx, θy, θz) and the position by pos[s] = (x, y, z).
The distance between two drones υ1 and υ2 with states s1
and s2, respectively, is dist(υ1, υ2) = dist(pos[s1], pos[s2]),
which is the Euclidean distance between (x1, y1, z1) and
(x2, y2, z2). A motion plan π for a drone υ is a sequence of
control commands for υ. Each control command could be a
waypoint on an intended trajectory or a target velocity along
an intended trajectory. When υ executes π starting with an
initial state s1, υ acts according to π and moves along a state
trajectory ζ, which is a sequence of states of υ. We denote
the state of υ at time t on ζ by ζ[t] such that ζ[0] = s1. Let
us define |π| to be the duration of the execution of π, which
is equal to |ζ|, the duration of ζ.

A formation S for V is {si}1≤i≤n, where si is a state
of υi ∈ V . A formation plan for V is Π = {πi}1≤i≤n,
where πi is a motion plan for υi ∈ V and |πi1 | = |πi2 |
for any i1, i2 ∈ [1, n]. We denote the plan πi for drone υi
in Π by Π[υi]. We denote the duration of the execution of
Π by |Π|, which is equal to |π| for any π ∈ Π. Given a
formation plan Π = {πi}1≤i≤n for V and an initial formation
S1 = {s1i }1≤i≤n where s1i is the initial state of υi ∈ V , the
formation trajectory Ξ of Π starting with S1 is {ζi}1≤i≤n,
where ζi is the state trajectory of υi according to πi. We
denote the formation of V at time t by Ξ[t] = {ζi[t]}1≤i≤n,
where ζi[t] is the state of υi at time t on ζi ∈ Ξ. We denote
the duration of Ξ by |Ξ| = |Π|. A formation S = {si}1≤i≤n

is safe if and only if dist(pos[si1 ], pos[si2 ]) ≥ Dsafe where
Dsafe is the safe distance between two drones for any i1 ̸= i2.
A formation trajectory Ξ is safe if and only if Ξ[t] is safe
for all 0 ≤ t ≤ |Ξ|. A formation plan Π is safe for an initial
formation S1 if and only if Ξ of Π starting with S1 is safe.

A frame is a set of pixels displayed simultaneously. A
configuration of a pixel p is a 4-tuple (x, y, z, c), where
(x, y, z) is the position of p with respect to the 3D world
frame and c ∈ C is a color, where C is the set of all possible
colors that the LED lights on the drones can display. A frame
f is a set of pixels {pj}1≤j≤m, where the configuration of
pj is (xj , yj , zj , cj) and m is the number of pixels in f ,
where 0 ≤ m ≤ n. We denote the position and the color of
pj by pos[pj ] = (xj , yj , zj) and color[pj ] = cj , respectively.
The position of every pixel in a frame must be unique in the
frame, and dist(pos[pj1 ], pos[pj2 ]) ≥ Dsafe for any j1 ̸= j2.

Definition 1: A frame f = {pj}1≤j≤m is renderable at
time t by a set of drones V = {υi}1≤i≤n with formation
S = {si}1≤i≤n at time t where si is the state of υi if there
exists an assignment g : f → V that assigns every pixel
pj ∈ f to a drone g(pj) such that 1) g(pj1) ̸= g(pj2) for
any j1 ̸= j2, and 2) the position pos[s] of g(pj) at time t is
pos[pj ], where s is the state of g(pj) at time t.

If f is renderable at time t by V with S, we say f is rendered
by S with g at time t. Since we can deduce g from S, we
simply say f is rendered by S at time t.



A. The Pixel Formation Planning Problem

We consider transforming f1 = {p1j}1≤j≤m1
at time t1

into f2 = {p2j}1≤j≤m2
at time t2, where t2 > t1. Let

V = {υi}1≤i≤n be a set of drones that takes part in the
transformation, where m1 ≤ n and m2 ≤ n. Let S1 =
{s1i }1≤i≤n be the formation of V at time t1, where s1k is
the state of υk ∈ V at time t1. Suppose f1 is rendered
by S1 with an assignment g1 at time t1. Some pixels in
f1 require pixel trajectory tracking during transformation,
meaning that the drones who renders these pixels need to
move along given trajectories exactly. These trajectories are
specified as follows. A single pixel trajectory specification
ω = (p1j1 , p

2
j2
, ζj1,j2 , πj1,j2), where p1j1 ∈ f1, p2j2 ∈ f2,

ζj1,j2 is a state trajectory where pos[ζj1,j2 [0]] = pos[p1j1 ],
pos[ζj1,j2 [t2 − t1]] = pos[p2j2 ], and πj1,j2 is a motion
plan that yields ζj1,j2 when a drone with state ζj1,j2 [0]
executes πj1,j2 . ω specifies how a pixel should move in pixel
trajectory tracking. We denote p1j1 , p2j2 , ζj1,j2 , and πj1,j2

in ω by pstart[ω], pend[ω], ζ[ω], and π[ω], respectively. A
pixel trajectory tracking specification for transforming f1
into f2 is a set Ω1,2 of single pixel trajectory specifications,
where pstart[ω1] ̸= pstart[ω2] and pend[ω1] ̸= pend[ω2] for any
different ω1, ω2 ∈ Ω1,2. Let f track

1 = {pstart[ω]}ω∈Ω1,2
and

f track
2 = {pend[ω]}ω∈Ω1,2 be the set of pixels involved in

pixel trajectory tracking in Ω1,2. Note that Ω1,2 could be
empty, meaning no pixel trajectory tracking is needed.

Definition 2: A frame transformation problem is a tuple
(V, f1, f2, S1,Ω1,2), where 1) V = {υi}1≤i≤n is a set of
drones, 2) f1 = {p1j}1≤j≤m1 is a frame at time t1, where
m1 ≤ n, 3) f2 = {p2j}1≤j≤m2

is a frame at time t2,
where m2 ≤ n and t1 < t2, 4) S1 = {s1i }1≤i≤n is the
formation of V at time t1 s.t. f1 is rendered by S1 with an
assignment g1 at time t1, 5) Ω1,2 is a pixel trajectory tracking
specification for transforming f1 into f2. The solution of a
frame transformation problem is a formation plan Π such
that 1) Π is safe for S1; 2) f2 is rendered by S2 at time
t2, where S2 = Ξ[t2 − t1] is the formation of V at time t2
and Ξ is the formation trajectory of Π starting with S1; and
3) Π[g1(pstart[ω])] = π[ω] for all ω ∈ Ω1,2.

Definition 2 does not specify how the drones change their
colors during transformation. Since we can remotely control
the colors of the drones, we can update the colors anytime.

We divide the timeline evenly into time steps. Let tk =
k × Tstep be the start time of the time step k for k ≥ 0
where Tstep is the duration of a time step. Suppose we are
given a sequence of frames F = ⟨f0, f1, . . . , fT ⟩, where
fk is the frame at time tk for 0 ≤ k ≤ T . We are also
given Ω = ⟨Ω0,1,Ω1,2, . . . ,ΩT−1,T ⟩, where Ωk,k+1 is a
pixel trajectory tracking specification for transforming fk
into fk+1 for 0 ≤ k < T . To simplify our notation, we
assume the pixel trajectory tracking specification Ωk,k+1 of
any two adjacent frames fk and fk+1 in any frame sequence
is implicitly given. We extend Definition 2 as follows:

Definition 3: A pixel formation planning problem is a
triple (V,F, S0), where 1) V is a set of drones, 2) F is
a sequence of frames ⟨fk⟩0≤k≤T , and 3) S0 is the initial

formation of V at time t0 such that f0 is rendered by S0

at t0. The solution of a pixel formation planning problem
is a sequence of formation plans Π = ⟨Πk⟩0≤k<T such
that Πk is a solution of the frame transformation problem
(V, fk, fk+1, Sk,Ωk,k+1) for 0 ≤ k < T .

B. The Pixel Contingency Formation Planning Problem

There is one more twist to the above setting regarding the
user inputs. Suppose a player can choose to press a button
at time tk1

to make a character jump at time tk2
as shown in

Fig. 1, where tk1
< tk2

. Suppose the planner does not know
tk1

, the time the player makes the decision, until time tk1
. In

the worst case, the decision is made just one time step before
tk2 (i.e., k1 = k2−1). Before the player makes the decision,
the planner needs to consider two scenarios: “jump” and “no
jump”. In the two scenarios, the sequences of frames starting
at tk2

diverge at time tk2+1. Let F“jump” and F“no jump” be
the sequences of frames starting at tk2

in the two scenarios.
Note that the first frame in both F“jump” and F“no jump” are
the same, but the pixel trajectory tracking specifications of
the first frame can be different. The planner cannot wait until
it knows the player’s decision and must generate a solution
that can render both frame sequences before tk2

. In other
words, a planner needs to generate a contingency formation
plan to cover both scenarios in order to provide the real-
time guarantee that a frame can be rendered at its designated
time regardless of the decision. There is a decision variable
x associated with the frame at time tk2

that records the
decision made by the player. The domain of x is dom(x),
which includes the options for x and a symbol nil. In this
example, dom(x) = {“jump”, “no jump”, nil}. Initially, the
planner does not know the decision made by the player, and
x = nil. When the player chooses o ∈ dom(x) before tk2

,
we set x = o. Then, at time tk2

, the formation plan for Fo

will be executed since the frames in Fo will be rendered.
Let us consider the general case in which a player has to

make many decisions over time. The given set of frames for
rendering is organized in a tree structure called a frame tree,
which is defined as T = (F, f root, child, next), where 1) F
is a set of frames, 2) f root ∈ F is the root of the frame tree,
3) child is a mapping F → 2F such that child(f) is the set
of child frames of any f ∈ F, and 4) next is a bijection
F×O → F where O is the set of all possible options such
that next(f, o) is a child frame of f .

If |child(f)| = 0, we say f is a terminal frame. If
|child(f)| > 1, we say f is a decision frame. Every decision
frame is associated with exactly one decision variable x such
that |dom(x)| = |childk(f)|+1, where the domain dom(x) is
a set of options for x. We assume every decision variable x
is unique in a frame tree and can only be associated with one
decision frame. next(f, o) ∈ child(f) is the next frame if the
player chooses o ∈ dom(x), where f is the decision frame
with decision variable x. One of the options in dom(x)\{nil}
is designated as the default option for x. If f root is a decision
frame and its decision variable is nil, we assume the default
option of the decision variable is chosen.
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Fig. 3: The architecture of the interactive drone light show
system.

Definition 4: A pixel contingency formation planning
problem is a triple (V,T, S0), where 1) V is a set of
drones, 2) T = (F, f root, child, next) is a frame tree, and
3) S0 is a formation of V such that f root is rendered by
S0. The solution of a pixel contingency formation planning
problem is contingency formation plan Π, which is a set
of formation plans {Πk1,k2

}fk1
,fk2

∈Fi s.t. fk2
∈child(fk1

) such
that Πk1,k2

is a solution of the frame transformation problem
(V, fk1 , fk2 , Sk1 ,Ωk1,k2).

V. INTERACTIVE DRONE LIGHT SHOW SYSTEM

Fig. 3 shows the architecture of our interactive drone light
show system. Unlike computer monitors, which can render
a new frame just in time, drone swarms cannot render a
new frame instantly since drones take time to move around.
Therefore, the formation planner has to know some future
frames in order to plan ahead where drones should go. In
this paper, we assume the frame controller can obtain the
information of some future frames from the game controller.
There is a frame buffer that stores the frames. At each
time step, the game controller can generate additional frames
that are inserted into the frame buffer. The frame controller
stores these future frames in the frame buffer. Moreover,
the game controller interprets the user inputs and sets the
decision variables in the frame tree in the frame buffer. A
pixel contingency formation planner updates the contingency
formation plan in the plan buffer based on the frame tree in
the frame buffer so that all the frames in the frame tree can be
rendered at the designated times. If the update can be finished
within one time step, we can guarantee that all frames can
be rendered at their designated times. At each time step,
the drone controller executes the first formation plan for the
root of the frame tree in the contingency formation plan. This
formation plan will be removed from the frame tree at the
end of the time step.

Algorithm 1 is the pseudocode of the frame controller.
Initially, the frame controller is given a frame tree T0 =
(F0, f

root
0 , child0, next0) and Π0, where Π0 is a solution of

T0. The execution loop does not terminate until the game
controller signals that the game has ended or f root

k is a ter-
minal frame. First, in each time step tk, the frame controller
executes Πnext

k that transforms f root
k into fnext

k (Lines 6–8).
If f root

k is a decision frame, fnext
k is nextk(f

root
k , o), where o

is either the chosen option or the default option if no option
is chosen.

Algorithm 1 The execution loop of the frame controller.
1: procedure FrameController
2: k := 0. Let t0 be the current time.
3: Let T0 = (F0, f

root
0 , child0, next0) be the frame tree at t0.

4: Let Π0 be the contingency formation plan for T0 at t0.
5: while the game has not ended and f root

k is not terminal do
6: Let fnext

k ∈ child(f root
k ) be the unique child frame of f root

k .
7: Let Πnext

k ∈ Π be the formation plan from f root
k to fnext

k .
8: Start executing Πnext

k for one time step.
9: Obtain new frame subtrees Tnew

k from the game controller.
10: Remove f root

k from Tk. Add Tnew
k to Tk to form T′′

k+1.
11: Remove Πnext

k from Πk to form Π′
k+1.

12: Let Dk be the decisions made by the player in [tk−1, tk).
13: Remove subtrees inconsistent with Dk from T′′

k+1 to
form Tk+1. Remove the formation plans for the frames
in the removed subtrees from Π′

k+1 to form Π′′
k+1.

14: Let Sk+1 be the formation of V according to Πnext
k at tk+1

15: Πk+1 := SPICOMP(V , Tk+1, Sk+1, Π′′
k+1)

16: if Πk+1 = nil, then return nil

17: f root
k+1 := fnext

k ; k := k + 1.

Second, the frame controller updates Tk and Πk based on
the set Tnew

k of new frame subtrees obtained from the game
controller at tk (Lines 9–10). The current frame f root

0 and the
current formation plan Πnext

k are removed from Tk and Πk to
form T′

k+1 = (F′
k+1, f

root
k+1, child

′
k+1, next

′
k+1) and Π′

k+1 =
Πk \ {Πnext

k }, respectively, where F′
k+1 = Fk \ {f root

0 }
and child′k+1 is the same as childk except f root

0 is removed
from the range of childk (Lines 10–11). Then the new frame
subtrees in Tnew

k are attached to T′
k+1 to form T′′

k+1. For
each new frame tree Tk′ = (Fk′ , f root

k′ , childk′ , nextk′) ∈
Tnew
k , f root

k′ must be a frame in F′
k+1, and all other frames

in Fk′ \ {f root
k′ } are not in F′

k+1. Then the frame controller
obtains T′′

k+1 = (F′′
k+1, f

root
k+1, child

′′
k+1, next

′′
k+1) by adding

Fk′ to F′
k+1 and updating child′k+1 according to childk′ to

form child′′k+1. A new decision variable is introduced to f root
k′

if |child′′k+1(f
root
k′ )| > 1 in T′′

k+1.
Third, the frame controller removes some subtrees in

T′′
k+1 according to Dk, the set of decisions made by the

player in the previous time step [tk−1, tk) (Lines 12–13). A
decision in Dk is a pair (xk′ , ok′), where xk′ is the decision
variable of the frame fk′ ∈ F′

k+1 and ok′ ∈ dom(xk′)\{nil}.
For any (xk′ , ok′) ∈ Dk such that fk′ ∈ F′′

k+1, we say the
subtree of T′′

k+1 rooted at nextk′(o′k′) ∈ child′′k+1(fk′) is
inconsistent with the decision (xk′ , ok′), where o′k′ is a non-
nil option of xk′ that is not ok′ . The frame controller removes
all subtrees inconsistent with any decision in Dk from T′′

k+1

to obtain Tk+1. After that, the frame controller removes the
formation plans for the frames in the removed subtrees from
Π′

k+1 to form Π′′
k+1.

Finally, the frame controller uses SPICOMP, our pixel
contingency formation planner, to solve the pixel contin-
gency formation planning problem (V,Tk+1, Sk+1) before
the next time step tk+1 (Line 15). The planner is given at
most a duration of Tstep to solve the problem. Although this
timing constraint is tight, the planner does not have to solve
the problem from scratch—it can reuse some parts of the
contingency formation plan Π′′

k+1 in the previous step to



speed up the planning process. However, if SPICOMP takes
too much time or the pixel contingency formation planning
problem has no solution, the planner fails to return a solution
and the frame controller terminates (Line 16).

VI. PIXEL FORMATION PLANNING ALGORITHMS

This section presents an algorithm called SPICOMP,
which stands for the Sampling-based PIxel COntingency
forMation Planning algorithm. SPICOMP solves the pixel
contingency formation planning problem by separating the
planning of drones for pixel rendering from the planning
of hidden drones. Given a frame tree T, it conducts a
forward search starting from the root of T and iteratively
solves the frame transformation problem between every
two consecutive frames. After finding a formation plan for
transforming one frame to the next, it conducts a backward
search to update the motion plans for the hidden drones
involved in the formation plan. Since the hidden drones have
more freedom to move around, it is easier to relocate them by
replanning than deciding where they should go in the forward
search. Both the forward search and the backward search use
sampling methods to select drones for frame transformation
and replanning. The pseudocode of SPICOMP can be found
in the accompanying video.

A. The Forward Search

The forward search is a depth-first search (DFS) that
expands the child frames of the current frame repeatedly,
starting with the root of T. The RandomAssignment function
returns a partial assignment gpartialk for the pixels in frame
fk. Suppose fk is partitioned into f track

k and fhop
k , which

are the set of pixels involved in pixel trajectory tracking
and pixel hopping, respectively. For every pixel p ∈ f track

k ,
RandomAssignment must assign p to the same drone as-
signed to the corresponding pixel in f root

0 according to the
pixel trajectory tracking specification for p. By contrast,
RandomAssignment has the freedom to assign a pixel in
fhop
k to any drone not assigned to the pixels in f track

k .
RandomAssignment uses a random sampling scheme as
follows: the probability of assigning a drone to a pixel
p ∈ fhop

k depends on the distance between the drone and the
pixel. Let Di,j be the distance between a drone υi ∈ V ′ not
involved in pixel trajectory tracking and a pixel pj ∈ fhop

k .
Let Vj = {υi}υi ∈ V′ s.t. Di,j ≤ Dassign

max
, where Dassign

max is the
estimated maximum distance that a drone can fly within one
time step in spite of the time delay for collision avoidance.
The weight of a drone υi ∈ Vj is wi,j =

1
Di,j+ϵ , where ϵ is

a small positive number. Then the probability of assigning
υi ∈ Vj to pj is wi,j∑

υi∈Vj
wi,j

. To avoid assigning a drone

to two different pixels, whenever υi ∈ Vj is assigned to
pj , υi is removed from Vj′ for all j′ ̸= j. Then wi′,j′ is
recalculated accordingly for all υi′ ∈ Vj′ . Note that we use
the most constrained variable heuristic to order the pixels for
assignment in ascending order of the size of Vj [18].

After choosing gpartialk , SPICOMP uses FramePlanner to
solve the frame transformation problem. FramePlanner re-
turns a partial formation plan Πpartial for drones that has

been assigned in gpartialk , and ignores the unassigned drones.
Many existing motion planning algorithms can be used as
FramePlanner to solve the frame transformation problem by
generating safe formation plans quickly (e.g., [13], [19], [20],
[21], [22], [23], [24], [25]).

B. The Backward Search
Next, SPICOMP completes gpartialk by finding another

partial assignment grelocatek for the unassigned pixels in
funassigned
k ⊆ fhop

k . Since these pixels are too far away from
all drones or all drones near them have been assigned to
other pixels, we must relocate some unassigned drones so
that these pixels can be rendered. Let Vunassigned be the set of
unassigned drones not involved in gpartialk . In RelocateHidden,
RandomRelocation randomly generates grelocatek , a mapping
from funassigned

k to Vunassigned, such that no two drones in
Vunassigned are assigned to the same pixel in funassigned

k .
RandomRelocation uses the same assignment scheme for
RandomAssignment, except it calculates Di,j differently. For
each υi ∈ Vunassigned, RandomRelocation searches for the
earliest state searliesti of υi that is available for relocation by
searching backward in Πtmp

k . Since the forward search con-
structs Πtmp

k incrementally, Πtmp
k contains all the formation

plans from f root
0 to fk. Hence, we can trace the state sequence

of any drone since f root
0 . searliesti is the state of υi in f earliest

i

at time tearliesti such that 1) υi goes dark after tearliesti and
2) all frames between f earliest

i and fk, exclusively, are not
decision frames at which υi has been assigned to move to
another pixel’s position in another branch of the frame tree.
Hence, υi is ready for relocation at tearliesti , and the relocation
would not affect the formation plans for the other branches
of the frame tree. Let Di,j = dist(pos[searliesti ], pos[pj ]) for
every υi ∈ Vunassigned and pj ∈ funassigned

i . Di,j is valid
if υi can fly from pos[searliesti ] to pos[pj ] within a duration
of tk − tearliesti , where tk is the designated time of fk. Let
V ′
j = {υi}υi ∈ Vunassigned s.t. Di,j is valid. Then RandomReloca-

tion generates grelocatek using the same assignment scheme
for RandomAssignment except V ′

j replaces Vj .
After generating grelocatek , RelocateHidden computes the

trajectories of the drones chosen by grelocatek by moving the
drones from their earliest states to the pixels’ positions. We
shall use an existing motion planning algorithm, namely Mo-
tionPlanner, to generate these trajectories that avoid collision
with other drones in Πtmp

k and Πpartial. Next, RelocateHidden
updates Πtmp

k and Πpartial by incooperating the trajectories
into the formation plan. Finally, RelocateHidden returns Π,
which extends Πpartial to include the formation plans for the
selected drones. If RelocateHidden fails to find an assign-
ment grelocatek for all pixels in funassigned

k or MotionPlanner
failed to find the trajectories, RelocateHidden returns nil and
DFS will try again with new random assignments gpartialk and
grelocatek . If the number of trials is greater than Trialmax, DFS
backtracks to the previous frame in the frame tree.

To avoid repeating the planning effort in the previous time
step, both RandomizeAssignment and RandomRelocation
use the same assignment in Πlast when Trial is 1. Therefore,
if no new frame is added to the frame tree in the previous



time step, both gpartialk and grelocatek remains unchanged, and
Πtmp = Πlast except the root formation plan is removed.

VII. EXPERIMENTAL EVALUATION

We conducted an experiment to compare SPICOMP with
and without the backward search. Moreover, we conducted
two additional experiments to examine the effects of chang-
ing 1) the number of drones relative to the number of pixels
in a frame and 2) the size of the frame buffer. This section
presents and discusses the results of the experiments.
Experimental Setup: We implemented our interactive drone
light show system in a simulator written in C++. We ran-
domly generated 50 gameplays in which characters were
simple geometrical shapes that moved around in random
cyclic paths. The motion of the pixels on the shapes was
based on pixel trajectory tracking. These shapes can spawn
smaller shapes as bullets in response to user inputs. In every
gameplay, the number of drones was larger than the number
of pixels in any frame. Initially, some drones were put in the
initial formation of the first frame, whereas the remaining
drones were hidden at random locations. We implemented a
formation planner to solve the frame transformation problem.
The planner generates motion plans in which drones fly in
strange lines. When two drones were on a collision course,
the planner will delay the start time of one of the motion
plans to avoid the collision [25]. The parameters being used
in the experiments are: Trialmax = 20, Tstep = 0.1s. The
experiments were conducted on an Apple laptop with M1
CPU and 16GB RAM.
Results: Fig. 4 shows that the running time of an iteration
of SPICOMP with the backward search is much shorter than
that without the backward search. As the number of drones
increases, the gap between the two lines in Fig 4 increases.
The error bars are the 95% confidence interval. The ratio of
the number of drones to the number of pixels is 1.5 in all
cases. Without the backward search, SPICOMP has to decide
where to move the hidden drones in the forward search. If
the forward search puts the hidden drones away from the
positions that require the hidden drones in the subsequent
frames, backtracking occurs in the DFS, causing a longer
running time. With the backward search, the positions of
the hidden drones were decided based on demand, and the
replanning often succeeded. Therefore, the backward search
helps reduce the running time significantly.

Fig. 5 shows that the running time of SPICOMP decreased
sharply as the ratio γ of the number of drones to the
maximum number of pixels in a frame increased. When
γ was close to 1, there were not enough drones to move
around to show every frame. Even when there were enough
drones, SPICOMP needed to take a few more samples in each
iteration to generate a contingency formation plan. When γ
was large, SPICOMP can easily solicit hidden drones for
pixel hopping and return a solution quickly.

We also conducted an experiment to show how the re-
quired number nmin of drones changed with the frame buffer
size, where nmin is the minimum number of drones with
which SPICOMP can return a solution within one time step.
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Fig. 4: SPICOMP’s running time (with and without the
backward search) vs. the number of drones.
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Fig. 5: SPICOMP’s running time vs. the ratio of the number
of drones to the maximum number of pixels in a frame.

By limiting the number of frames in the frame buffer, we
found nmin by gradually increasing the number of drones
until SPICOMP can return a solution. When the frame buffer
size was small, SPICOMP was forced to generate short
contingency formation planning that gave drones very little
time to react to the user inputs, and thus, it needed many
hidden drones. When the frame buffer size was large, the
contingency formation plans simply required more drones
to operate. Thus, the optimal frame buffer size is one that
strikes a balance between the two extremes.

VIII. SUMMARY AND FUTURE WORK

This paper describes an interactive drone light show
system for real-time user inputs. Our system relies on a
simpling-based contingency formation planner called SPI-
COMP, which leverages hidden drones to achieve fast re-
sponse time. To our knowledge, SPICOMP is the first con-
tingency formation planner for drone light shows. According
to the contingency formation plan returned by SPICOMP,
pixels can be displayed correctly despite the uncertainty of
user inputs. However, if a frame tree is too large, SPICOMP
could take more than one time step to update a contingency
formation plan. Moreover, SPICOMP is a sampling algo-
rithm that cannot guarantee returning a solution, especially
when the number of drones is close to the number of pixels
in a frame. In the future, we intend to identify the conditions
under which a planning algorithm exists that can compute a
contingency formation plan in one step.
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