A Dynamic Programming Algorithm for Grid-based Formation
Planning of Multiple Vehicles

Tsz-Chiu Aul!

Abstract— A common operation in multirobot systems is to
generate a motion plan for multiple robots such that the robots
can move in formation to achieve some desired effects. For
example, in autonomous parking lots, a group of vehicles can
be asked to move to another location when they block another
vehicle that needs to leave the parking lot. In this paper, we
present a novel grid-based planning approach for motion plan-
ning that minimizes the makespan of moving multiple vehicles
from one location to another in a safe manner. Unlike most
existing multirobot planning algorithms, our algorithm uses
dynamic programming to compute a nearly-optimal motion
plan for a large group of vehicles in polynomial time with
the help of a given set of intermediate vehicle patterns. Our
experimental results show that our algorithm is much faster
than an exact algorithm but does not increase the minimum
makespans tremendously.

I. INTRODUCTION

In many multirobot systems, robots have to move in
formation as quickly as possible while avoiding collisions.
A typical example is drone light shows, in which a group
of drones displays a sequence of light patterns in the sky
by changing from one drone pattern to another repeatedly.
There has been work on controlling a team of robots to
form and maintain a robot pattern while the robots move
together [1], [2]. Some works have considered the multi-UAV
formation reconfiguration problem in which the control rules
can transform the initial formation configuration into a final
configuration [3]. However, long-term planning is needed
for more complicated formation reconfiguration. In general,
motion planning is NP-hard [4], [5]. There is no efficient
algorithm to solve the multirobot planning problem unless
we make some assumptions to simplify the problem. For
example, Yu and LaValle presented an optimal formation
control on graphs in which agents take exactly one time-
step to move from one vertex to an adjacent vertex [6], [7].
However, the general case remains difficult.

In this paper, we present a new approach that relies on a
given set of intermediate robot patterns to speed up the plan-
ning process. This approach is suitable for situations in which
the intermediate robot patterns are easily obtainable. The idea
of this approach stems from our study of autonomous parking
lots (APLs), a type of high-density parking (HDP) [8], [9],
[10], [11]. Unlike conventional parking methods that reserve
more than half of the space for driveways and sidewalks,
HDP reduces the size of driveways by putting vehicles close
to each other. An autonomous vehicle in the parking lot can
be asked to move autonomously if it blocks another vehicle
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Fig. 1: Move a block of ve-
hicles to the right in an au-
tonomous parking lot.

Fig. 2: Local motion plans.

that needs to leave the parking lot. One basic operation
in APLs is to relocate a block of vehicles (See Fig. 1).
The efficiency of APLs can be improved by minimizing the
makespan (i.e., the length) of the motion plan so that more
vehicles can get in or out of the parking lot.

The task of minimizing the makespan is nontrivial since
each vehicle can have more than one local plan generated
by the local planner, and our algorithm has to choose the
best set of local plans such that the makespan of the entire
multi-vehicle motion plan can be minimized. For example,
in Fig 2, each vehicle has two feasible local plans. If the
vehicle 11 chooses w9 and 15 chooses 73, V5 has to delay its
execution of 73 since my and 73 cannot be overlapped during
execution. However, if 1; chooses m; instead, both 7; and
w3 can be executed simultaneously, and the makespan can be
reduced. Fig. 2 highlights the fact that ad hoc execution of
local plans (i.e., a vehicle chooses a local plan right before
the execution) can fail to minimize the makespan. A planning
algorithm is needed to avoid overlapping local motion plans
such that the makespan can be shortened.

Another way to reduce the makespan is to choose local
plans in which vehicles can move faster. However, vehicles
in APLs are close to each other, and hence it is dangerous
to drive at high speed. We define a safety buffer around a
vehicle such that no other vehicle should present at any time
(see Fig. 3). The safety buffer is dynamic since the shape of
a safety buffer depends on the current speed and the current
heading of the vehicle. Typically, the shape depends on the
amount of space a vehicle needs for an emergency stop
in the current driving direction. We utilize the reservation
system in autonomous intersection management (AIM) for
handling safety buffers [12]. Our grid-based motion planning
algorithm integrates the reservation system into the planning
algorithm such that the safety constraint can be enforced.

In summary, the contributions of this paper are:

« We define the formation planning problem for multiple
vehicles given a sequence of intermediate patterns.



« We define a grid-based reservation system for handling
vehicles’ dynamic safety buffers for emergency stops.

« We present a polynomial time algorithm for solving the
formation planning problem with respect to vehicles’
safety buffers.

« We conducted experiments in simulation to compare our
algorithm with an optimal graph-search algorithm.

This paper is organized as follows. After the related
work section in Sec. II, we define our vehicle formation
planning problem in Sec. III, and then present our algorithm
in Sec. IV. Finally, we present our experimental results in
Sec. V and conclude this paper in Sec. VI.

II. RELATED WORK

Many existing works on multirobot planning specifically
focus on controlling a team of robots to maintain a pattern
(e.g., [1], [2]). Wei et al. presented a set of integer pro-
gramming and dynamic programming models for scheduling
longitudinal trajectories of a chain of vehicles based on
space-time lattices [13]. Our work can be considered as a
generalization of longitudinal car-following models to 2D
and higher dimensions. Leader-follower models are popular
models for formation control (e.g., [14], [15]). But these
works typically aim for maintaining a formation by control
rules and do not optimize for the makespan. The multi-
UAV formation reconfiguration is the task of transforming an
initial formation configuration into a final configuration [3].
Our work belongs to this line of research, but we rely on the
assumption that the sequence of intermediate formations is
given, which is not found in the literature.

A feature of our approach is the discretization of space
and time. This feature is similar to occupancy grids [16],
but our work is closely related to the grid-based reservation
system in AIM [12], [17]. Wu et al. proposed a data
structure called stacked reservation grid (SRG) for motion
planning [18]. Lattice-based motion planners go one step
further to discretize the state of robots [19], [20].

Our bilevel optimization is similar to hierarchical mo-
tion planning. For example, Vukosavljev et al. introduced
hierarchical motion primitives to solve the motion planning
problem for a large collection of agents in a modular
framework for motion planning [21], [22]. Grymin et al.
presented a hierarchical approach for primitive-based motion
planning and control of autonomous vehicles using a library
of pre-specified motion primitives [23]. Currently, our system
has a two-level hierarchy only, but it is possible to extend
the hierarchy for more elaborated scenarios (e.g., coalition
planning for several different groups of vehicles).

ITII. VEHICLE FORMATION PLANNING PROBLEM

We shall consider motion planning for a finite set V =
{vi,va,...,v,} of vehicles in a finite 2D workspace. We
discretize the workspace into a N, x N, grid, where
{C1,Cs,...,Cn,.N,} is the set of all cells in the grid. We
discretize the timeline into a sequence of time intervals:
To, T1, ..., T where Ty, is the horizon, T; = [t;,t;11)
and t; = i x D for a given constant D and 0 < ¢ < k.

Stopping

Distance

velocity = 30 km/h

Enough room for emergency stops
even moving at a high speed.

lj4

Fig. 3:
buffer.

Dynamic

safety Fig. 4: A formation planning
graph.

For simplicity, we shall assume D = 1, such that ¢; = 1.
Following the notations in AIM [12], [24], the space-time is
discretized into a set of tiles, each of which is a pair (C;, Tj).
A tile is occupied by a vehicle if the tile intersects with the
vehicles’ dynamic safety buffer, as defined below, during the
execution of a motion plan for the vehicle. In our algorithm,
collision avoidance is achieved by preventing two vehicles
from occupying the same tile.

Let p = (z,y,0) be a pose of a vehicle v, where (x,y)
is the coordinate of the center of v in the workspace and 6
is the heading of v. Following the simple car model in [25],
let (x,y,0,v,¢) be a configuration of a vehicle v, where
(z,y,0) is a pose of v, v is the velocity of v, and ¢ is the
steering angle.

Each vehicle can have a different size and shape. More-
over, each vehicle v has a static safety buffer 9y(v), which is
a region slightly larger than the shape of the vehicle. 9y(v) is
the safety buffer when a vehicle is stopped. A dynamic safety
buffer d(v, s) is the one that depends on the configuration
s = (z,y,0,v, ¢) of v. Typically, d(v, s) is larger than Jy(v/)
when v > 0 since a moving car needs more space for safety.
Thus, a dynamic safety buffer is an extension of the static
safety buffer such that the vehicle can have enough space
to make an emergency stop (e.g., the blue region in Fig. 3).
A dynamic safety buffer can be obtained by increasing the
length of the static safety buffer in the heading direction and
fanning out slightly in the direction of the angular velocity
so that the vehicle can stop inside the dynamic safety buffer
when it is asked to stop immediately. In this paper, all safety
buffers are dynamic unless we state otherwise.

A local motion plan T for a vehicle v is a sequence of con-
trol commands for controlling v to move along a trajectory.
Given two poses p; and pa for v, there is a local planner for
v that can generate a finite set LocalPlan, (p1, p2) of distinct
local motion plans quickly. That is, LocalPlan, (p1,p2) =
{m1,m2,...,m} such that v can change its pose from p;
to po using any one of these local motion plans, assuming
the velocity of v at p; and p, are zero. The footprint
of a local motion plan 7 is the set Tile(w) of tiles that
intersects with the safety buffer of v when v traverses on the
trajectory during the execution of 7. For collision avoidance,
the footprints of two local motion plans for two different
vehicles cannot overlap, even during an emergency stop.

Given a set V of n vehicles, a formation F' for V is a
set {p1,p2,...,pn} of poses, where p; is a pose for v; € V.
Given two formations i = {p;} }1<i<n and Fy = {p?}1<i<n,
for V = {v; }1<i<n Where p} and p? are the poses for v;, a



formation plan for Fy and Fy is II = {m; }1<i<,, Where m;
is a local motion plan such that 7; € LocalPlan,, (p}, p?),
for all v; € V. However, we cannot directly execute a
formation plan to transform one formation into another since
the footprints of some of the local motion plans in II may
cross each other (see Fig. 2). Hence, some of the motion
plans have to be delayed so that the footprints of the two
vehicles do not overlap. A schedule for II = {m;}1<;<p, is
I' = {t; }1<i<n, Where ¢; is the time delay of the execution
of m; for 1 <14 < n. Before ¢;, v; remains at its pose p;. Let
Tile(m;,t;) be the footprint 7; after delaying its execution
for time ¢; relative to the start time ty of the execution of II
(i.e., m; will be executed at time ¢g + t;). A schedule I' for
IT is valid if and only if Tile(m;,,;,) N Tile(m,,t:,) = 0
for 1 <41 < iy <n. We call (II,T") a timed formation plan
for V, where T is a valid schedule for II. The makespan of
(IL,T) is makespan(IL,T') = maxi<;<,{t; + |m|}, which
is the time difference between t; and the end time of the
last action execution, where |m;| denotes the length of the
execution of the plan ;.

Given a sequence (F, F,...,F,,) of formations for a
set V of n vehicles, a meta-formation plan is TI™*? =
{(I1;,T;)}1<j<m—1, where (II;,T;) is a timed formation
plan that transforms Fj; to Fj;q for 1 < 7 < m — 1.
II™eta also needs a meta-schedule T™e? = (t?et"’)lgjgm,l
to determine when a timed formation plan in II™**? should
start. T2 is valid if and only if the footprints of all
local motion plans in the timed formation plan (II;,T';) do
not overlap with the footprints of all local motion plans
in (IIj41,Tj41) for 1 < j < m — 2. More precisely,
rmet2 is valid if and only if Tile(m;,,t;,) N Tile(ms,, t;,) =
0 for every m;, € II; and every m;, € IL;;1, where
1 <7 < m-—2 We call (TI™? T'™) a timed meta-
Sormation plan for V given (Fy, Fy, ..., F,,). The makespan
Of (Hmeta’l"meta) iS makespan(ﬂmetavrmeta) — tTn:Leial +
makespan(IL,,_1,T—1).

In summary, the problem statement of our vehicle forma-
tion planning problem is defined as follows:

Definition 1: Given
1) aset V= {v,va,...v,} of vehicles,

2) a sequence ([, Fy,..., F,,,) of formations where F; =

{p? }1<i<n in which p] is the pose of v; in Fj, for 1 <

7 < m, and o
3) aset LocalPlan,, (p/, p!™") of local motion plans for all

vieVand 1 <j<m-—1,
find a timed meta-formation plan (TIMe*2 T'™¢t) such that
makespan(II™et T'"Met2) js minimized, where
1) [ = (t7€2); < j<yn—1 is a valid schedule of the meta-

formation plan IT™e*2, and ‘
2) Ime= = {(I, I'j) hi<j<m—1, where I'; = {tj }1<i<n is

a valid schedule of a formation plan II; = {m! H<i<ns

for some local motion plan 7/ € LocalPlan,, (p!, p7 ™)

IV. FORMATION PLANNING ALGORITHMS

According to Definition 1, the solution to the formation
planning problem hinges on choosing 1) a local motion
plan 7] from the set of all possible local motion plans

generated by the local planner for v;, for each pose in every
formation transformation; 2) a valid schedule I'; for every
formation plan II; constructed by the chosen local motion
plans; and 3) a valid meta-schedule '™, In this section,
we present a bilevel optimization algorithm in which 1) the
lower level minimizes the makespan of the timed formation
plan for each transformation of formations by choosing the
local motion plans for every vehicle, and 2) the upper level
minimizes the makespan of the timed meta-formation plan.
It turns out that both the lower level optimization and the
upper local optimization can be solved by the same dynamic
programming algorithm that returns a nearly-optimal solution
in polynomial time.

A. Formation Planning Graphs

The lower level optimization aims to address this prob-
lem: given two formations Fj; and Fb for V and II; =
LocalPlan,,(p!, p?) where p} € Fy and p? € F; for all
v; € V, find 1) a set {m;}1<i<n Of local motion plans
where w; € II; for all v; € V, and 2) a valid schedule
I' = {t;}1<i<n such that makespan(II,T") is minimized.
First, we formulate this problem as a graph search problem
as follows. We construct an undirected graph (V, E’) by
having a vertex v for each vehicle v € V and inserting an
undirected edge into E’ for each pair (v, 12) of vehicles if
the footprints of v, and v, can potentially overlap if they
are executed simultaneously (i.e., there exist m; € II; and
g € Iy such that Tile(wy,0) N Tile(m2,0) # (). This
condition can be checked by enumerating all pairs of plans
in II; x IIo. Then we convert the undirected graph (V, E’)
into a directed acyclic graph (V, E) as follows: for each
vertex v € V) whose in-degree is zero, we conduct a depth-
first search in (V, E’) using v as the root. When the depth-
first search visits a child node v, of v; for the first time, it
should check whether 7y € II; and w9 € Il such that 7o
can be possibly executed after 7. This check can be done
by checking whether there exists a start time ¢ € [0, |7|) of
w9 such that the footprints of 7, and 75 does not overlap
when 7y starts at time 0 and 7o starts at time ¢. If this check
fails, the depth-first search backtracks at v;. If the depth-first
search reaches all vertices in V' and there is no cycle (i.e.,
no vertex is visited twice), we insert a directed edge (v, 1)
into £’ whenever v is a parent of v/ during the search. If the
search fails to reach all vertices or a cycle is found, we repeat
the depth-first search for another vertex until we construct
(V, E) that is a connected, directed acyclic graph (DAG). If
no connected DAGs can be constructed, our algorithm fails
since our algorithm can only work with connected DAGs.
The reason is that the direction of a directed edge (v, ')
denotes the requirement that the chosen local motion plan
for v has to be executed before the chosen local motion plan
for /. This ordering is inconsistent if the graph is cyclic.

Each vertex 1; in V is associated with a set L; =
{l;}1<j<m,| of non-negative numbers, where I; = || is
the length of the local motion plan 7; for every m; € IL;.
Likewise, each edge (v;,,v;,) in E is associated with a table
A, i, of non-negative numbers, where d;, ;, € Ay, ;, is the



minimum time delay of the local motion plan 7;, € 1I;, after
the execution of the local motion plan 75, € II;, such that the
footprints of 7;, and 7;, do not overlap (i.e., Tile(m;,,0) N
Tile(mj,,d;,.5,) = 0 and Tile(r;,,0) N Tile(n,,,t) # 0 for
0 <t < 6y 4,)- We can compute §;, j, by increasing d;, j,
from 0 to |m;, | until the footprints of 7;, and 7;, does not
overlap. Note that the size of A;, ;, is |IL;, | x [II;,].

Let (V,E,L, A, v0t) be a formation planning graph,
where . = {Li}lgigna A = {Ai17’i2}(V11,V12)€E’ and
Uroot € V is the root of the DAG (V, E). A solution to a for-
mation planning graph is a set I = {m;, hi<i<n and 75, €11,
of local motion plans. Note that there is one local motion
plan 7;, from each II; in I1°'. In the rest of this paper, we
assume a formation planning graph is given and focus on
minimizing the makespan of the given graph.

B. Solution’s Makespan

Given a solution II*®, the formation planning
graph  can be reduced to (V,E, L', A voot),
where L’ = {lii hi<i<n ana 1j,€L; and 7, €Il and

A = {6]'7'1 WJig }(l/il Vig)EE and 65, 5, €Ay iy and my, s, €T
For simplicity, let \; = l;; and ¥;, 5, = dj, j;,- Thus, in
the reduced formation planning graph, there is one number
\; for each vertex v;, and there is one number ¥ for
each edge (v4,,V4,).

Let 7 = (v;,, Vi, ..., V;,) be a path that connects the root
Vroot = V4, to v;, in a reduced formation planning graph. The
lower bound of the minimum delay of T is

E ﬁik,ik+1 .

1<k<h—1

1,12

D(r) =

If 7 is a critical path (i.e., all chosen local motion plans on
T start at the lowerest possible delay), D(7) is the actual
minimum delay of the execution of the chosen local motion
plan 7;, € 1= for v;,. In other words, the time delay of
mj,, in a valid schedule I'" is at least D(7). Otherwise, it is
just a lower bound of the minimum delay.?

A schedule T'* = {tI}1<i<p is optimal if and only if
it is valid and there does not exist another valid schedule
I' = {t;}1<i<n such that ¢; < ¢t} for some v; € V. The
following theorem states that ¢} = max ¢y, D(7).

Theorem 1: Given a solution IT**' to a formation planning
graph (V, E, 1L, A, t1o0t), the optimal valid schedule is

I = {t] hi<i<n (1

where tf = max,ey, D(7) and T; is the set of all paths
from ot to v;.

Sketch of Proof. Without loss of generality, the indices of
the vertices are ordered by a topological sort of the DAG
(V, E), and let 1 = vrgot. Since the length of the path to 14
is zero, t; = 0 which is optimal for 7; € II*°". Suppose ¢}
is optimal for 1 <4 < k. Let ¢, = max,ey, , D(7) =

2D(7) is the lower bound of the minimum delay of mj,;, for the given
formation planning graph only. When more than one formation planning
graph can be constructed for a given set of vehicles, it is possible that
D(7) for one formation planning graph is smaller than D(7) for another
formation planning graph.

MaX;s eparent(k4+1) 10,0 + 3}, where parent(k + 1) is the
set of indexes of the parents of v, in the DAG. Since all
indexes in parent(k + 1) are less than or equal to k, t; are
optimal by the induction hypothesis. Therefore, ¢}, is also
optimal. By induction, I'* is optimal. O
The above proof shows that ¢7 can be computed recur-
sively by this equation:
=

K3

max {9y, + 5}, )
i/ €parent(i)
for 1 < ¢ < n and t] = 0. Then we can use this equation
to compute makespan(IT*®' T*) = max;<;<,{\: + tI}
recursively.

C. Optimal Solution

An optimal solution II*°" of a formation planning graph
(V,E,L, A, vroot) is one that minimizes the makespan: for
all 1%, makespan(IT*°', T*) > makespan(IT**',I'*), where
I'* and I'* are the optimal schedules for IT*®' and II*°,
respectively. More precisely, the minimum makespan can be
computed by the following equation:

min {makespan(l’[s"', F*)}
1150l
. X 3)
= jem ™8, e, {m e+t }} !
where j; € 1I; is a shorthand for m;, € II;, for 1 <7 <
n. However, this equation requires an enumeration of all
possible solutions and then evaluates the makespan of each
solution via Eq. 2. This brute-force approach is quite slow.
Therefore, we want to factorize the equation to simplify the
calculation. First of all, we expand the max term using Eq. 1:

min { max {l;, + tf}}

j1€ly,....jn€lly | 1<i<n

= min { max {lji + max D(T)}} 4)
J1€l,...,jn€ll, | 1<i<n TEY,

= amin e ma 1,4 03 )

J1€M1,..,jn€lly | 1<i<nTEY,

where T; be the set of all paths from vyt to v;. The max
terms refer to an enumeration of all possible paths starting
from oot in the graph. This enumeration provides some
opportunities for factorizing the equation. For example,
the minimum makespan of the formation planning graph
in Fig. 4 is minhenl’jzenz’jsene,,ﬂen‘;{max{lh’ (5j1,j2 +
ljz)? (6.7'1,j3 + lj3)7 ((Sjl,jz + 6j27j3 + ljs)’ (6j1,.7'2 + 5j2,j4 +
lj4)v (6j17j2 + 5]’271'3 + 5j3,j4 + lj4)7 (5j17j3 + 6j3,j4 + lj4)}}’
where each term refers to one path starting from the root
vy in the graph. We factorize the common prefixes of these
terms:  Minj, ery jy€ll joells joet, {max{ly,, (05,5,  +
max{lj,, (65,5, + max{lj,, 05,5, + L} (65, +
lj4)}76117j3 + maX{ljsv(éj?,,jzx + lj4)}}}' Then we can
push some of the min operators inside the max terms:
ming, exr, {max{l;, , min;, er, j, err, {max{min;, err, {(6;,
+ max{lj,, (6,5, + max{lj,, (05,5, + L)} (Gjaja +
i)} 05y gs + max{lj,, (65,5, + 1)}}}}}. Compared
to Eq. 3, this equation is much faster in calculating the
minimum makespan. However, this equation has two



drawbacks: 1) some of the min operators cannot be pushed
deep inside the min terms, and 2) it is hard to write down
an equation to describe where we should insert the min
operators in the max terms. In fact, when most paths in the
graph are intertwined, the min operators cannot be pushed
inside the min terms, and therefore the running time of the
calculation remains exponential to the number of vertices.

D. Dynamic Programming

It would be ideal if we could push all min
operators closer to the terms that use them. For
example, minjl €lly {max{ljl ’ minjzenz {(6j1»j2 +

max{lj,, ming, e, {(8,,j, + max{lj,, minj, er, {(8s,5, +
L) b mingern {0, + L) ming,ena {05, 5, +
max{lj,, min;, e, {(6j5,5, +1,)}}}}}. But this calculation
is incorrect since this allows a vehicle to choose different
local motion plans for different min operators. For example,
the optimal value of j, in the term min;, err, { (0, 5, +1;,)}
can be different from the the optimal value of j; in
minj,em,{(6j5,5, + )} But vs cannot choose two
different local motion plans in II4 simultaneously.

This equation, however, is not totally useless. In fact, the
result of this calculation is a lower bound of the actual
minimum makespan since this equation addresses a relaxed
problem in which the constraint that a vehicle can choose one
and only one local motion plan is relaxed. If we randomly
select one of the chosen local motion plans during the
calculation of this equation, the quality of the solution is
suboptimal but not too far from the optimal solution in many
formation planning graphs according to our experiments.
More importantly, this equation can be computed in poly-
nomial time by dynamic programming, making it a practical
solution to our formation planning problem.

In general, the recursive equation for this calculation is:

P(i1,i2,ji,) =

{5;‘1-1 s, T MAX {lji27 max

43 Echildren(ig)

Jzznell%lm {P(Z27Z37]12)}}} )
(5)

where i € children(iy) (i.e., v;, is a child of v;,). In this
calculation, we have to add a dummy vertex vy and a dummy
edge (v, 1) before the root vertex vyt = v1 in the graph.
Vg has one local motion plan 7, of zero length, such that
djo,j1 = 0 for all m;; € II;. Then the calculation starts
with P(0,1,1), and the result is a lower bound of the actual
minimum makespan.

Based on Eq. 5, we devised Algorithm 1 to calculate
a lower bound of the minimum makespan of a formation
planning graph by dynamic programming. The running time
of Algorithm 1 is O(H x n?) where H = max;<;<y |11/,
assuming the maximum number of local plans for a vehicle
and the number of children vertices of a vertex in a graph
are constants. To construct a solution I, we can modify
the algorithm to keep track of the chosen value j;, € II;, in
the min operator in Eq. 5. Let II; be the set of all m;, for
every v;, € V that contributes to the result of Algorithm 1.
We can construct a solution II°' by randomly choosing a

Algorithm 1 Calculate the lower bound of the minimum
makespan by dynamic programming.

1: procedure CalcMinMakespanLB(V, E, L, A vioot)

2:  Conduct a topological sort of (V, E) and set the vertex
indices in the ascending order.

3 Add vg to V3 Add (vo,v1) to E; Add Lo = {0} to L;
Add Ag1 = {507]‘1 = O}le emy to A Let ITp = {7l’1}

4:  Create a n X n X H table P, where H is the maximum

number of local motion plans for a vehicle.
for i1 =n — 1 down to 0 do

for all m;, €1IL; do
for all is € children(i1) do
Compute P(i1,1i2,ji,) by Eq. 5
return P(0,1,1)

R A

local motion plan from II;  for every v;, € V. Then we
can use Eq. 2 to compute the corresponding schedule I'*.
Note that makespan(IT*°', ') differs from the lower bound
of the minimum makespan returned by Algorithm 1. In fact,
makespan(II*°', I'*) can be larger than the actual minimum
makespan since the choice of local motion plans from II;
can be suboptimal.

E. The Upper Level Optimization

The upper aims to find an

plan (Hmeta , Fmeta)

level optimization
optimal timed meta-formation
for a sequence (Fy,Fs,...,F,) of formations such
that makespan(II™™ T'™*2) is minimized. We can
model this problem as a formation planning graph
(V,E,L, A troot) in which 1) V = {F|,Fy,...,Fp},
2) E = {(Fi, Fit1)}i<i<m» 3) L = {Li}1<i<m where
L; = {makespan(II¥°',T})} where I is the solution
of Algorithm 1 for the formation planning graph for F;
and Fi+1, for 1 < i < m, and 4) A = {Ai,i+1}1§i<m
where A; ;11 = {5i Hl} 511"71-1“ is the minimum time
delay between Hs°' and Hﬁp and 5) 1yoot = F1. Then we
can use Algorlthm 1 to compute a nearly optimal timed
meta-formation plan (II™*2 T'™e2) The running time of the
algorithm is O(m?) since there is only one timed formation
plan for each pair of adjacent formations. Together with the
lower level optimization, our approach’s total running time
is O(m x H x n? +m?).

F. Automatic Generation of Intermediate Formations

Our approach relies on the availability of a sequence of
intermediate formations. In some applications, it is easy to
identify the intermediate formations that are helpful. For
example, in autonomous parking lots, we can precompute
a set of locations based on the geometrical shape of a
parking lot and force vehicles to go through these locations
in formation. However, in drone light shows, the intermediate
formations for complicated formation transformation may
not be obvious. In the latter situations, we can gener-
ate intermediate formations automatically using sampling-
based motion planning algorithms such as RRT [26], [27],
RRT* [28], and PRM [29]. If we keep the shape of the
formation the same in all intermediate formations, we can
consider all robots in a formation as one robot and use



Algorithm 1 as the local planner for these sampling-based
algorithms. Obviously, the sequence of intermediate forma-
tions generated by this method may not be optimal since
we can do better by allowing formations to have different
shapes. In the future, we will study formation shapeshifting
when applying sampling-based motion planning algorithms
for the automatic generation of intermediate formations.

V. EXPERIMENTAL EVALUATION

We conducted two experiments to evaluate our approach.
In Experiment 1, we compared Algorithm 1 to a graph-
search algorithm that returns a motion plan with minimum
makespan. In Experiment 2, we tested our algorithm in
confined environments such as autonomous parking lots. Our
experiments were conducted in a simulator we developed for
traffic simulation. Both the simulator and the algorithms were
implemented in C++23 with the SDL2 library.

In Experiment 1, we developed a graph-search algo-
rithm that returns an optimal formation plan with minimal
makespan. The graph-search algorithm is based on Eq. 4 with
some tricks to push some but not all min operators inside
the max terms. It is a complete algorithm that guarantees
to return an optimal solution that is the same as a brute-
force search’s solution, but the algorithm is around three
times faster than a naive implementation of a brute-force
search. Unfortunately, the running time of the graph-search
algorithm remains exponential to the number of vehicles.
Due to space limitation, we cannot present the details of
the graph-search algorithm. For more information, please
examine the source code of the graph-search algorithm and
the brute-force search we released on GitHub.?

We considered two different types of formation: rectan-
gular grids and triangular grids. We generated formation
pairs by the following steps. For each formation of size
n, we systematically put n vehicles in a grid such that
they are close to each other. The vehicles’ headings are the
same. After generating an initial formation, we duplicated
the formation at a random location in the workspace with
a different orientation to generate the final formation. Then
we check whether there are local motion plans for every
vehicle to move from the location in the initial formation to
the location in the final formation. If there is a vehicle that
has no local motion plan, we reject the pair of initial and
final formations and generate another pair. In the end, the
number of local motion plans for each vehicle is either 1
or 2. We randomly generated 100 formation pairs generated
according to the above procedure.

Second, we converted the formation pairs into formation
planning graphs based on a discretization of the workspace
and the timeline. The size of a cell in a grid is 1m x 1m,
and the length of the time interval of a tile is 0.04s. The size
of the static safety buffer of all vehicles is 6m x 3m, but the
size of the dynamic safety buffer increases with the vehicle’s
speed. We ran Algorithm 1 and the graph-search algorithm
with every formation graph and measured the running times

3https://github.com/chiuau/multiplan

1.2

1.0 o

%O.S % °-R Z g o4
X X °
206 Qg x x Bz X
< x &gk R
x g X X

g 0.4 X -4

0 xx E R x Graph Search

' o Dynamic Programming

0.0

0 10 20 30 40 50

Number of Vehicles

Fig. 5: Average makespan vs. the number of vehicles

40
35 x Graph Search

XX

= 30 s Dynamic Programming
2]
£ 25
= 20
2
e x
2 10
5
0 XX Xt X xxn x x¥ %5 o o o oo oo oo

0 10 20 30 40 50
Number of Vehicles

Fig. 6: Running time vs. the number of vehicles

TABLE I: The average makespans in Experiment 2.

Left-Turn
11.57

Right-Shift
713

Reverse
35.47

Avg. makespan (in sec.)

of the algorithms and the makespans of the formation plans.
The results are shown in Fig 5 and Fig 6.

As can be seen in Fig. 5, the makespans of the formation
plans generated by both algorithms are mostly the same. It
means that even though Algorithm 1 cannot guarantee to
find an optimal solution, it often returned an optimal solution
when n, the number of vehicles, is small. When n is larger
than 30, the graph-search algorithm took too much time to
find an optimal solution (see Fig. 6), but Algorithm 1 can still
return solutions within a few milliseconds. According to the
trend in Fig. 5, we believe that when n is large, the solutions
returned by Algorithm 1 are not optimal but remain close to
the optimal solution. More importantly, since Algorithm 1
can return a suboptimal solution quickly, Algorithm 1 is more
useful than the graph-search algorithm when n is large.

In Experiment 2, we used our algorithm to generate
motion plans for autonomous vehicles in a parking lot. We
considered three maneuvers: 1) shifting a block of vehicles
to the right, 2) moving a block of vehicles forward and then
making a left turn, and 3) reserving the orientation of a
block of vehicles. In each maneuver, we handpicked different
sequences of intermediate formations. Then we measured the
average makespan of the timed meta-formation plan, and the
result is shown in Table I. This experiment demonstrates the
feasibility of our approach for essential vehicle maneuvers
in confined areas. We found no difficulty in handpicking the
intermediate formations to accomplish the maneuvers.



VI. DISCUSSION AND FUTURE WORK

We have presented a new dynamic programming algorithm
for planning a group of vehicles to move from one formation
to another with respect to their dynamic safety buffer. This
grid-based approach relies on a sequence of intermediate
formations that can be either given or generated automati-
cally. Our algorithm can generate a schedule of local motion
plans for many vehicles with a suboptimal makespan within
a few milliseconds, which is much faster than a complete
graph search algorithm. The speed of the algorithm is very
important in some applications such as autonomous parking
lots. Our experimental results show that the makespan of
the motion plans generated by this algorithm is not far
off when compared with an exact algorithm. The bilevel
optimization procedure stitches the motion plans together to
create a motion plan that moves a group of vehicles along
the sequence of intermediate formations efficiently.

The advantage of our approach is that our algorithm
can run extremely fast and can scale better than exist-
ing multirobot motion planning algorithms as the number
of vehicles increases. Moreover, our grid-based approach,
which converts vehicles’ trajectories into sets of tiles for
collision detection, can easily handle non-holonomic con-
straints of vehicles’ motions as well as the dynamic safety
buffer for emergency stops. Although we focus on motion
planning in 2D workspaces, our approach should work in
other multirobot systems in 3D environments. Nonetheless,
our approach has several limitations. First, vehicles are
required to stop completely at their designated locations in
intermediate formations, causing non-smooth rides. In the
future, we intend to utilize lattice-based motion planning
to generate smooth trajectories between formations. Second,
our approach only works with directed acyclic formation
planning graphs. In some cases, valid motion plans exist even
if there are cycles in the graph. Hence, one future work is
to make our algorithm work with undirected cyclic graphs.
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