
Extended Goal Recognition Design with First-Order Computation Tree Logic

Tsz-Chiu Au
Supplementary Material

Abstract

This is a technical appendix for the paper entitled “Extended
Goal Recognition Design with First-Order Computation Tree
Logic” we submitted to AAAI 2022. This document contains
the pseudocodes of two algorithms and the definition of goal
query statements that are omitted in the paper. We also pro-
vide additional explanations to the examples in the paper, and
add two more examples to illustrate the use of EP, choice ver-
tices, and choice edges. Finally, we briefly explain why we
should use EF instead of AF in Statement 3 in Section “Find-
ing WCD by Model Checking”.

The Pseudocode of the Goal Query Graph
Translation Algorithm

Algorithm A1 is the pseudocode of the algorithm that we
described in Section “Translation to FO-CTL sentences” in
the paper. TransV(v1) and TransE(v1, v2) are tr(v1) and
tr(v1, v2), respectively. The algorithm generates correct FO-
CTL statements but not the most succint FO-CTL state-
ments. In our C++ implementation of the algorithm, we have
implemented some optimization techniques to shorten the
FO-CTL statements generated by the algorithm. For exam-
ple, our implementation replaces AF with AG at terminal
vertices when certain conditions are satisfied.

The Pseudocode of a Model Checking
Algorithm with Caches

The EVAL function in Algorithm 2 in the paper uses an ex-
ternal model checking algorithm MC to evaluate a FO-CTL.
The algorithm assumes we can hijack the model checking
code and intercept the recursive functions in order to im-
plement the caching mechanism. Algorithm A2 is the pseu-
docode of a simple model checking algorithm that evaluates
a FO-CTL sentence using the definition of entailment di-
rectly, without using any external code. The algorithm is a
depth-first search that explores the tree structure of the sen-
tence and the transition system in parallel. The meanings of
the symbols in the pseudocode are:

• nodec
i is the child of nodei if nodei has one child only,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• nodel
i and noder

i are the left and right children of nodei,
respectively, if nodei has two children,

• E(s) denotes the set of subsequent states of s, and
• P leg(M, s) is the set of legal paths in M that passes

through s in T (M).

In the pseudocode, the cost function for computing the
cost attached to the truth value are deferred to Line 46. The
reason for deferring the call of the cost function to the end
is to make the pseudocode looks shorter, and it does not of-
fer any computational advantage. In our implementation, the
evaluation function is invoked immediately whenever t is as-
signed a truth value.

Goal Query Statements
To facilitate communication, we devise a way to define a
goal query graph without drawing the graph. We can formu-
late a goal query graph as a set of traces, each of them is
an interleaving sequence of state conditions and edges with
edge conditions. We call the set of traces a goal query state-
ment. The goal query statements of the goal query graphs in
Figures 2 and 3 are

[Nil AP x∗1 AP x2]

and
[Nil AP (x ∧ XAx) APXA End],

respectively. These goal query statements consist of just one
trace. We use an asterisk to specify a free variable as a
weakly-matched variable. If the free variable occurs mul-
tiple times in a goal query statement, it is sufficient to add
an asterisk to one occurance of the variable to specify that it
is a weakly-matched variable.

The goal query graph in Figure 4 involves several
branches of traces. We can partition a trace into smaller
traces and denote them by trace variables. The choice ver-
tices and the choice edges can be encoded in a trace by re-
placing the last state condition with a sequence of alternative
traces as follows:

[x AP [g1 AX g2 AP T] [g2 EX g1 EP T]];T = [g3 AP x],

where T is a trace variable. When a goal query statement has
more than one trace, the traces are separated by semicolons.
Since a goal query graph is a directed acyclic graph and has
no cycle, the set of traces in a goal query statement is finite.

Our implementation of the goal query translation algo-
rithm takes goal query statements as inputs. One advantage
of the use of goal query statements is that we can easily spec-
ify additional constraints such as x1 6= x2, which states that
the variables x1 and x2 cannot match the same goal. Our im-
plementation of the goal query graph translation algorithm
can handle some additional constraints such as x1 6= x2 and
x1 6= g. However, the implementation of this feature is not
specified in the pseudocode in Algorithm A1.

Discussion of the Examples in the Paper
We generated a set of files illustrate different features of goal
query graphs. The files can be found in the folder aaai22-
example that we submitted along with this document. Most
of them are based on the examples in the paper. We also
added two new examples to illusrate how EP edges and
choice vertices work.

The Example in Figure 1
In Introduction, we presented a scenario in Figure 1 in which
we want to recognize the agent’s first and second goals so
that we deploy the security guard to the correct checkpoints
to intercept the agent if the second goal is ghack. The goal
query statement for this scenario is:

[Nil AP x1 AP x2] (A1)

We want both x1 and x2 to be strongly match the goals so
that both goals can be revealed. Before redesigning the envi-
ronment, the WCD is 6 since the agent who aims for ghack
can reveal its first goal only at either D5 or F5. But it would
be too late to notice that the first goal is gB at F5. Our EGRD
search algorithm found that if we put a barrier D3 and E3,
as discussed in Introduction, the WCD can be reduced to 4
since the latest position we can determine an agent who aims
for gB and then ghack is at E5.

We can do better by using the following query statement
instead:

[Nil AP x1 AP ghack] (A2)

This statement ignores gexit as the second goal and only fo-
cus on the substructures in which ghack is the second goal.
Thus, optimizing the WCD of this statement can get a bet-
ter result: after redesigning the environment, the WCD is
3 which corresponds to the position E2 or F1. We can do
better because the EGRD search algorithm ignores the sit-
uation in which the second goal is gexit, which is okay for
our scenario since we do not need to intercept the agent if
the second goal is gexit.

The Example in Figure 2
In Section “Goal Query Graph”, we reused the example in
Introduction to show when to use weakly-matched variables.
Figure 2 is a goal query graph for “the observer in Figure 1
does not need to know whether the first goal is gA or gB
as long as it recognizes ghack as the second goal.” Notice
that this is a weaker requirement than the one discussed in
Introduction. If we do not need to know the first goal, we

can use a weakly matched variable for x1. The corresonding
goal query statement is

[Nil AP x∗1 AP x2] (A3)

Before redesigning the environment, the WCD is 2 because
in the worst case, the agent has to visit E2 in order to re-
veal ghack as its second goal, if we can ignore the first goal.
Redesigning the environment cannot give a lower WCD.
Clearly, when compared with the scenario in Introduction,
the WCD is smaller because Statement A3 is weaker than
Statement A1. This is what we want in some situations. For
example, as stated in Introduction, “if security guards have
enough resources to protect two locations simultaneously, it
is sufficient to know two possible locations an intruder plans
to visit.” We can simply deploy security guards to A5 and F5
whenever the agent visits E2.

The Example in Figure 3
Figure 3 in Section “Goal Query Graph” illustrates the use
of special predicates: XA and End. The goal query statement
is:

[Nil AP (x ∧ XAx) APXA End] (A4)

Algorithm A1 will translate this statement into

∃x{AF (x ∧ (∀x1[(x1 6= x) ⇒ ¬x1])
∧(AX A [∀x2 [¬x2]UEnd)]} (A5)

Moreover, our program performs some optimizations to
the translation and generates the following FO-CTL sen-
tence instead:

∃x{AF (x ∧ (∀x1 6∈ {x}[¬x1]) ∧ (Last ∨ AX AG∀x2[¬x2])}
(A6)

∀x1 6∈ {x}[¬x1] is equivalent to ∀x1[(x1 6= x) ⇒ ¬x1] but
there will be two less nodes in the FO-CTL sentence. We can
replace A [∀x2 [¬x2]UEnd with AG ∀x2[¬x2] to shorten
the sentence, but we need to add Last to check whether the
current state is a terminal state. Last is like End except that
Last matches a terminal state before End.

The Example in Figure 4
The goal query statement of the goal query graph in Figure 4
is:

[x AP [g1 AX g2 AP T] [g2 EX g1 EP T]];T = [g3 AP x],

However, this example is a bit contrived, and it is hard to
come up with a real life example that uses this goal query
graph. Nonetheless, we created one environment to show
how this goal query graph works. The environment is shown
in Figure A1.

Before redesigning the environment, the WCD is 1 be-
cause the goal query graph matches the vertex 8. It does
not match the vertex 7 because g2 cannot be matched in all
paths starting at vertex 12. However, after redesiging the en-
vironment, the edge (12, 17) is removed, causing g2 can be
matched on the remaining paths. The WCD is reduced to 0
after redesigning the environment.

2

7
G0

0

3
8

12
G1

1

17
G3

2

13
G2

4

22
G0

3

11

18
G3

5

23

6

7

8
G0

9

10

Figure A1: An environment for the goal query graph in Fig-
ure 4.

A New Example to Show How EP Edges Works
The goal query graph in Figure 4 may not be the best to illus-
rate how EP edges works and why we need EP edges. There-
fore, we consider Figure 1 again and extend it to show why
EP edges are needed in some situations. Figure A2 shows the
extended environment, which is the same as Figure 1 except
that there are three more legal paths that go through E3 but
does not go to ghack. In this environment, the Statement A1
and Statement A2 cannot match any substructure in the en-
vironment because not every legal path that goes through E3
will go to ghack.

Although we cannot find a substructure in which an agent
must reach ghack, it would be helpful to find a structure
that an agent will probably reach ghack. The following goal
query statement can do just that.

[Nil AP x1 EP ghack] (A7)
When compared with Statement A2, this statement does

not require the agent always reach ghack after reaching a
goal that matches x1. This statement only requires the agent
to have one path that reach ghack after reaching a goal that
matches x1. Although this is a weaker statement, model
checker can at least find some substructures that matches this
statement. The WCD is 6 since we can confirm that x1 is gB
at F5 only. After redesigning the environment, the WCD can
be reduced to 2 by deleting the edge between D3 and E3. Al-
though the security guards cannot be certain that the agent
will hack the computer, the security guard can pay attention
to the agent that could possibly go to the computer room and
ignore the agent that will not go to the computer room.

A New Example to Show How Choice Vertices and
Choice Edges Works
The example in Figure 4 in the paper may not be the best
to illustrate how choice vertices and choice edges works.

A B C D E

5

4

3

2

1

F

Figure A2: An extended version of the environment for in
Figure 1 with addtional paths that go through E3.

Therefore, we create a new environment in which an agent
may aim for one or two goals. The environment is shown in
Figure A3. This environment extends the example in (Keren,
Gal, and Karpas 2014) with two more legal paths. Each new
paths have two goals instead of one. Then Statement A4 can-
not work correctly because Statement A4 assumes each legal
path has one goal only.

The following goal query statement extends Statement A4
to allow two alternative traces. The first alternative trace is
like Statement A4 that only matches one goal. The second
alternative trace matches two goals. Figure A4 shows how
the choice vertex and the choice edge merge the two traces
together in a goal query graph.

[Nil APXA [(x ∧ XAx) APXA End]

[(x1 ∧ XAx1) APXA (x2 ∧ XAx2) APXA End]] (A8)

With the new goal query statement, the WCD is 4 be-
fore redesiging the environment and 1 after redesiging the
environment. This is the same as the WCDs for the goal
query graph in Figure 3. In this example, we can see that
choice vertices and choice edges provide some feasibility on
the number of goals that are matched according to the goal
query graph.

Using AFφ Instead of EFφ in Finding WCD by
Model Checking

In Section “Finding WCD by Model Checking”, we propose
to use EFφ to compute the WCD of φ. We can replace EFφ
with AFφ and get the correct result only if we assume that
every path starting from the initial state s0 contains a state
that satisfies φ. Most existing GRD work assume that all le-
gal paths will end with a goal (e.g., (Keren, Gal, and Karpas
2014)) . However, our work does not rely on this assump-
tion. Even if every legal path ends with a goal, φ may not be
true on every legal path.

Typically, the evaluation of AF uses short-circuit evalua-
tion to skip some of the paths during evaluation—whenever

21
0

7

6

3
14

0
1

6
G3

20

5

2

10

3

15

4

20
G1

5

12

7

17

8

22

9

21
10

23
1211 24

G2
13

4
15

8
G4

22

9

16

14

17

19

18

19

21 23

Figure A3: An extended version of the example in (Keren,
Gal, and Karpas 2014). There are two more legal paths on
which there are two new goals: G3 and G4

XA

(x and XA_{x})

End

XA

(x1 and XA_{x1})

(x2 and XA_{x2})

XA

End

XA

Figure A4: The goal query graph of Statement A8

there is a path that do not satisfies φ at all states on the
path, the remaining paths will be skipped. Therefore, if we
use AFφ to find WCD, the short-circuit evaluation can skip
some paths that contain the state with the maximum cost.
In contrast, EF will not skip these paths. If we disable the
short-circuit evaluation of the AF operator, the evaluation of
AFφwill return the maximum cost, but the truth value of AF
can be false even if there exists a substructure that match φ.

On the other hand, EF also uses short-circuit evaluation
to skip some paths during evaluation—whenever there is a
path that satisfies φ, the remaining paths will be skipped.
The computation of WCD requires the evaluation of every
path such that the evaluation function of EF can identify the
maximum cost among all paths. Thus, the model checking
algorithm such as Algorithm A2 has to disable the short-
circuit evaluation of the EF operator. Unlike AF, the truth
value of EF can tell whether there exists a substructure that
match φ. For this reason, EFφ has an advantage over AFφ
when we disable short-circult evaluation.

References
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal Recognition
Design. In International Conference on Automated Planning
and Scheduling (ICAPS), 154–162.

Algorithm A1: The goal query graph translation algorithm.
1: procedure Translate(Graph)
2: Let v0 be the start vertex of Graph
3: φ = TransV(v0)
4: For every weakly-matched variable x in φ
5: Let P be the set of all paths to all x in φ
6: Let prefix be the common prefix of all paths in P
7: Insert ∃x before the last node in prefix
8: For every strongly-matched variable x in φ
9: Insert ∃x before φ

10: Return φ
11: procedure TransV(v1)
12: If v1 is a terminal vertex, return cond(v1)
13: If v1 is a state vertex and (v1, v2) is an edge,
14: return cond(v1) ∧TransE(v1, v2)
15: If v1 is a nil vertex and (v1, v2) is an edge,
16: return TransE(v1, v2)
17: If v1 is a choice vertex.
18: Let (v1, v2), . . . , (v1, vm) be the choice edges.
19: return TransV(v2) ∨ . . . ∨TransV(vm)

20: procedure TransE(v1, v2)
21: If (v1, v2) is an AP edge
22: If v1 is a state vertex
23: If cond(v1) = True,
24: return AX AFTransV(v2)
25: Else
26: return AX A [cond(v1, v2)UTransV(v2)]
27: Else // v1 is a nil vertex
28: If cond(v1) = True,
29: return AFTransV(v2)
30: Else
31: return A [cond(v1, v2)UTransV(v2)]
32: Else If (v1, v2) is an EP edge
33: If v1 is a state vertex
34: If cond(v1) = True,
35: return EX EFTransV(v2)
36: Else
37: return EX E [cond(v1, v2)UTransV(v2)]
38: Else // v1 is a nil vertex
39: If cond(v1) = True,
40: return EFTransV(v2)
41: Else
42: return E [cond(v1, v2)UTransV(v2)]
43: Else If (v1, v2) is an AX edge,
44: return AXTransV(v2)
45: Else // (v1, v2) is an EX edge
46: return EXTransV(v2)

Algorithm A2: Evaluation of a FO-CTL formula φ in M =
(S,E,G, s0) with a cache C.

1: procedure EVAL(nodei, s, θ)
2: /* φ, M , C, and P leg are given by Algorithm 1 */
3: t :=C((nodei, s, θ), P leg(M, s))
4: If t exists, Return t
5: If nodei = >, Then t := True
6: If nodei = ⊥, Then t := False
7: If nodei = g,
8: If g ∈ L(s), Then t := True Else t := False
9: If nodei = x,

10: If (xθ) ∈ L(s), Then t := True Else t := False
11: If nodei = ¬,
12: If EVAL(nodec

i , s) = True,
13: t := False Else t := True
14: If nodei = op where op is either ∧,∨,⇒, or ⇔,
15: t := EVAL(nodel

i, s, θ) op EVAL(noder
i , s, θ)

16: If nodei = ∀x,
17: If EVAL(nodec

i , s, θ ∪ {x/g}) = True for all g ∈ G,
18: t := True Else t := False
19: If nodei = ∃x,
20: If EVAL(nodec

i , s, θ∪{x/g}) = True for some g ∈ G,
21: t := True Else t := False
22: If nodei = AF or nodei = AG ,
23: If EVAL(nodei, s, θ) = True, Then t = True
24: Else If EVAL(nodec

i , s
′, θ) = True for all s′ ∈ E(s),

25: t := True Else t := False
26: If nodei = EF or nodei = EG ,
27: If EVAL(nodei, s, θ) = True, Then t = True
28: Else If EVAL(nodec

i , s
′, θ) = True for some s′ ∈ E(s)

29: t := True Else t := False
30: If nodei = AX ,
31: If EVAL(nodec

i , s
′, θ) = True for all s′ ∈ E(s),

32: t := True Else t := False
33: If nodei = EX ,
34: If EVAL(nodec

i , s
′, θ) = True for some s′ ∈ E(s),

35: t := True Else t := False
36: If nodei = AU ,
37: If EVAL(noder

i , s, θ) = True, Then t = True
38: Else If EVAL(nodel

i, s, θ) = False, Then t = False
39: Else If EVAL(nodei, s

′, θ) = True for all s′ ∈ E(s),
40: t := True Else t := False
41: If nodei = EU ,
42: If EVAL(noder

i , s, θ) = True, Then t = True
43: Else If EVAL(nodel

i, s, θ) = False, Then t = False
44: Else If EVAL(nodei, s

′, θ) = True for some s′ ∈ E(s)
45: t := True Else t := False
46: Call the cost function of nodei to compute cost(t)
47: C((nodei, s, θ), P

leg(M, s)) := t with cost(t)
48: Return t with cost(t).

