Extended Goal Recognition Design with
First-Order Computation Tree Logic

Tsz-Chiu Au

chiu@unist.ac.kr

Ulsan National Institute of Science and Technology (UNIST)
South Korea

IJI'IlE L

Goal Recognition Design (GRD)

® Goal recognition — an observer infers the goal of an agent
from a sequence of observations of agents’ actions.

e Goal recognition design! — modify an environment to help
observers to recognize the goal of an agent.

S go <|~"trta it > 91
A L A
s | s
3 L
2 : P2 :P3
pl 1 1 p4
1| beeqeiee- - 80 -t

1 Keren et al. Goal Recognition Design. AAAI 2014

Worst Case Distinctiveness (WCD)

e Worst case distinctiveness — a popular objective function for GRD

» The highest number of observations that an observer needs to observe
before it can be certain of the agent’s goal in the worst case.

I R S > g1
A . A
4 | N 5
s | : =
2 : P2 :P3 |
1 p]_ o p4 1
1 R R B I L

Before redesign, WCD =4

Minimizing WCD

e GRD aims to find a sequence of modifications to an environment
in order to minimize the WCD.

A B C D E A B C D E
5 | Go<qrop i > g1 5 | 90 91
A D A A A
4 | = 5 4
3 | | 5 |:> 3
2 : 1925 §p3 | 2
! P1 P4 ' . P1 P4 .
1 S EECEEE - 80 - - -=-- - 1 S EREEE SN L FECEEEY
Before redesign, WCD =4 After redesign, WCD =0

Weakness of WCD

e When there exist two paths to two different goals but share a
long common prefix, it is difficult to reduce the WCD even if
other goals can be recognized easily.

81 82

(3
.
.
.
.
.

83 84 85 8687 8s

WCD,

Goal Condition

e |nstead of asking exactly which goal an agent aims for, an
observer asks whether the agent aims for a goal condition

» e.g., one of any two goals but not any other goals
» |t is weaker than recognizing a goal exactly, but still useful.

81 8> 81 82

% X

83 B4 85 8687 8s 83 84 85 8687 8s

WCD, ‘ :

WCD,

Extended Goal Recognition Design (EGRD)

® Goal sequence — an agent can aim for more than one goal.

Gezit Ghack Gezit
X e v
Belelelelol 5 _'_'_;'_:_914 """""""""""""""" 'q ?::_'::::::::_J_,
2
T 43—

Our Contributions

e A framework of extended goal recognition design

» Use first-order computation tree logic (FO-CTL) to express
goal conditions

» The definition of WCD based on goal conditions.
» Finding WCD by model checking
e A graphical representation of FO-CTL sentences for
extended goal recognition

» A translation algorithm from goal query graphs to FO-CTL
sentences

e The EGRD search algorithm

» A caching mechanism for speeding up the search algorithm

First-Order Computation Tree Logic (FO-CTL)

e FO-CTL = first-order logic with path quantifiers (A and E)
and temporal operators (F, G, X, and U)

» A1 means Y holds on all paths
E) means) holds on at least one path
where Y is either

F ¢ means ¢ eventually has to hold

G ¢ means ¢ always holds

X ¢ means ¢ holds at the next state

(¢, U ¢,) means ¢, has to hold at least until ¢, holds

» We assume no function symbol, and there is only one
predicate symbol Goal(g)

" The predicate symbol Goal will be omitted. S;
® For example,

Punique = Ax{AF (x AVx'|[(x" # x) = AG =x'])}

¢unique is true

which checks whether a goal g exists such that an agent
must eventually achieve g while the agent will not So
achieve any other goal after achieving g.

The WCD of a Goal Condition

e The WCD of a goal condition ¢ is

max min |dist(sg,S; _
{peplegsﬁsd)(m[(So l)]} 1

where

» P9 is the set of all legal paths

» S4(p) is the set of states on a legal path
p € P9 such that ¢ is true in these states

» dist(sy,S;) is the distance between s; and 1 bunique s true
the initial state s,

dist(sg, S;)

10

Finding WCD by Model Checking

Given a goal condition ¢, evaluate EF ¢ at the initial state s, by model
checking.

For example,
EF ¢unique = EF 3x{AF (x AVX'[(x" # x) = AG =x'])}

Attach a cost function to each node in a sentence.
» e.g, the cost function of Node 1 is max, and the cost function of Node 2 is
dist(sg, S;)
The costs, along with the truth values, are propagated to the root node
during the execution of the model checking algorithm.

Goal Query Graph (GQG)

Goal query graph — a graphical representation of goal conditions
For example, the GQG of 3x,3x, [AF [x;] A AXAF x,] is

» 3 vertex types: state vertices, nil vertices, and choice vertices

Directed acyclic graph:

» 5 edge types: AP edges, EP edges, AX edges, EX edges, and choice edges
State vertices can have state conditions (e.g., (x,V —x4))
AP edges and EP edges can have edge conditions (e.g., XA = Vx[—-x])
Choice vertices and choice edges:

Translating GQGs into FO-CTL Sentences

e A depth-first search in the goal query graph.

>

v

The FO-CTL sentence is constructed in a bottom-up fashion.
» Each vertex/edge type has its own rule for translation.

» Insert existential qualifiers for the free variables.

» Optimization techniques for shortening the sentence.

e Runningtime: O(|V| + |E|)

The EGRD Search Algorithm with Caches

e A depth-limited, best-first search
» Store unexpanded transition systems in an open list.

» Repeat the following steps until the open list is empty or
the time limit

= Remove a transition system M from an open list

= Use a model checking algorithm to evaluate M and
compute WCD.

= |f the evaluation is true and the WCD is lower than
the best WCD

> set this transition system as the best solution.
" |f the search depth of M is less than a threshold

> apply modifications to M to insert the generated
models into the open list.

» Return the best solution

The Caching Mechanism

e Caching mechanism — store the evaluation results of
the recursive calls in the model checking algorithm in
a cache.

» Reuse the results in subsequent runs of the model checking
algorithm.

» Need a succinct encoding of transition systems’ states.

Empirical Evaluation

Table 1: Execution times (in sec.) vs. the number of goals.
1 Goal 2Goals 3 Goals 4 Goals

. LOGISTICS 1.67 7.85 10.86 14.99
® The goal query graph: DEPOTS 054 2.08 241 3.02
GRID 044 496 5355 102.83

BLOCK-WORLD 0.79 443 9.63 17.54

------------------- @ Table 2: Execution times (in sec.) with and without cache.
No Cache With Cache Improvement

LOGISTICS 6.43 0.90 86.0%
DEPOTS 5.87 0.90 84.5%
GRID 1.55 0.53 65.8%
BLOCK-WORLD 2.94 0.68 76.9%

® The running times increase as the number of goals increases.

® The caching mechanism can greatly reduce the running time of
the EGRD search algorithm.

Summary and Future Work

Extended goal recognition design

» Woeaker goal conditions

» Agents can aim for a sequence of goals
Express goal conditions in FO-CTL

» Finding WCDs by model checking
» Goal query graphs

Caching mechanism to speed up the EGRD search
Future work: Partial observability

The source code with additional examples:
https://github.com/chiuau/AAAI22-egrd

https://github.com/chiuau/AAAI22-egrd

Thank you!

