Gridlock-free Autonomous Parking Lots for Autonomous Vehicles
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Abstract—Many cities suffer from a shortage of parking
spaces. Research in high density parking (HDP) focuses on
how to increase the capacity of parking lots by allowing
vehicles to block each other but temporarily give way to other
vehicles by driving autonomously upon request. Previous works
on HDP did not consider mixing different parking strategies
and ignored the possibility of gridlock when multiple vehicles
move simultaneously. In this paper, we describe the design
of autonomous parking lots, which allows the deployment of
different parking strategies in different regions in a parking
lot. We present algorithms for checking whether adding a
vehicle to an autonomous parking lot can lead to gridlock.
QOur simulation shows that autonomous parking lots can hold
60% more vehicles given the same amount of space.

[. INTRODUCTION

In many cities, finding a parking space is difficult due
to the limited amount of parking space. Recent research on
high density parking (HDP) focuses on utilizing autonomous
driving to greatly boost the capacity of parking lots [1], [2],
[3], [4]. The design of conventional parking lots reserves
more than half of the space for driveways and sidewalks [3],
[5]. HDP reclaims these spaces by allowing vehicles to park
in the driveways or reducing the number of driveways by
putting vehicles close to each other. An autonomous vehicle
in the parking lot can be asked to move if it blocks another
vehicle that needs to leave the parking lot. HDP can increase
the capacity of a parking lot by an average of 62% according
to one study [6]. HDP can be realized by fully automated
driverless SAE Level 4 parking functions recently introduced
by major car manufacturers.

The early high-density parking lot design put vehicles in
queues so that vehicles circle round in a parking lot [7].
However, most recent works on HDP prefer putting vehicles
in stacks instead [1], [8], [3], [6], [4]. All of these works have
not considered mixing both queues and stacks in a parking lot
design. Let us take a look at the parking lot in Fig. 1, which
allocates queues (the purple areas) in the middle area and
stacks (the red areas) near the upper and lower boundaries.
It is hard to tell whether replacing the queues with stacks is
a better choice in this parking lot, as it appears that vehicles
in the queues can get in and out of the parking lot easily
given the locations of the entries and the exits. Hence, we
should not immediately conclude that stacks are better than
queues without considering the geometrical shape of parking
lots and the locations of entries and exits.

In this paper, we present a high-density parking lot design
called autonomous parking lots (APLs) in which queues and
stacks can coexist. The idea is that a parking lot is partitioned
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Fig. 1: The layout of an autonomous parking lot.

into several regions. Each region can be an empty space,
a stack, a queue, or other structures. Different regions are
managed by different management agents separately. The
management agents use the empty space (the green areas
in Fig. 1) to send vehicles in and out of their regions and
the parking lot. The traffic in an empty space is managed
by a reservation system similar to Autonomous Intersection
Management (AIM) [9], such that vehicles have to reserve
the spaces on their trajectories in the empty space before
they can enter the empty space.

Mixing both queues and stacks can potentially lead to
gridlock—some vehicles are blocked by other vehicles for-
ever and cannot leave the parking lot. Moreover, unlike most
previous works, we do not put every vehicle in a parking
space of a predefined size (e.g., 5m X 2m), since this one-
size-fit-all scheme could waste a lot of space if vehicles
have different sizes. Gridlock can occur inside queues and
stacks if vehicles use different amounts of parking space,
as we shall discuss in Sec. IV. This paper presents how to
prevent gridlock even if we mix queues, stacks, or any other
parking strategy in an autonomous parking lot. In summary,
the contributions of this paper are:

o We present the design of autonomous parking lots,
including the reservation system and the communication
protocol between the management agents.

o We analyze the sufficient conditions under which grid-
lock would not occur in APLs and present algorithms
for gridlock detection and prevention.

« We implemented a simulator of autonomous parking
lots and conducted experiments to compare conven-
tional parking lots with autonomous parking lots.

This paper is organized as follows. After the related work
section in Sec. II, we define all components in an APL in
Sec. III and analyze the conditions for gridlock-free APLs
in Sec. IV. Finally, we present our experimental results in
Sec. V and conclude this paper in Sec. VL.



II. RELATED WORK

Automatic parking has already been a commercial feature
in some luxury vehicles. Thanks to deep learning’s superior
performance in computer vision tasks such as parking scene
recognition, automatic parking has become much more reli-
able [10]. In 2019, Tesla rolled out a feature called Smart
Summon?, which enables a customer to summon their car
from across a parking lot remotely. Automated valet parking
(AVP) allows passengers to leave the car in a drop-off
zone and let the car park itself. Last year, Bosch, Ford?,
and Mercedes-Benz* demonstrated the AVP feature of their
vehicles. [11] is a recent survey of AVP.

As the AVP technology becomes mature, we are poised to
tackle parking problems in urban transportation. High density
parking (HDP) addresses the shortage of parking space by
utilizing AVP in parking lots and allowing vehicles blocks
each other temporarily. [7] is an early study of HDP that puts
vehicles in parallel rows such that vehicles can cycle around.
To our knowledge, it is the only work that organizes vehicles
as queues in HDP. However, the subsequent HDP research
dismissed queue structures and prefers stacking vehicles
in a first-in-last-out manner. Timpner et al. [1] optimized
parking space by k-stacks, which put multiple vehicles in
a perpendicular parking slot. D’Orey et al. [8] proposed an
automated parking model in which parking areas are a group
of stacks, and vehicles have to utilize the buffer area to
move between the stacks. They also devised some planning
strategies for controlling vehicles in the parking lot [3].
Azevedo et al. [4] thoroughly evaluated the high-density
parking lots in [8] with different reallocation strategies and
spatial configurations. Banzhaf et al. [2] presented a novel
approach called k-deques that parks vehicles in driving lanes.
Nourinejad et al. [6] presented another stack-based approach
in which a parking lot is divided into several islands, each
contains multiple stacks.

Apart from stacks and queues, other parking strategies do
exist. Zips et al. [12] increased the capacity of parking lots by
up to 12% by varying parking spots’ width. Our APL can
also take advantage of different vehicles’ width by having
stacks and queues of different widths in a parking lot.

III. AUTONOMOUS PARKING LOTS

This section defines all components in APLs, including
the regional managers, the gate managers, the reservation
handlers, and the communication protocols.

A. Regions and Managers

A region R is a closed, path-connected, non-empty space
on a 2D-plane in R2, with or without “holes” (i.e., the region
may not be simply connected). R can be a non-rectangular
region with obstacles such as columns or light poles. The
areas occupied by the obstacles are not part of R. 0R denotes

2https://www.tesla.com/support/autopilot

3https://www.caranddriver.com/news/a33808473/
ford-bosch-automated-parking-pilot

4https://www.daimler.com/innovation/case/
autonomous/driverless-parking.html

the outer boundary of R, which excludes the boundaries of
the obstacles inside R.

Every region R has at least one entry and at least one exit,
which are line segments on the boundary OR. A vehicle can
enter IR via an entry and leave R via an exit. Two regions are
connected or adjacent if (1) their boundaries overlap each
other, and (2) they share entries or exits on their overlapping
boundary. If R; and R, are connected, an entry of R; on
their shared boundary is an exit of Ro, and vice versa.

There are two types of regions in a APL: managed regions
and shared regions. Vehicles are stored in managed regions
only. In Fig. 1, the red regions and the purple regions are
managed regions. The green regions are shared regions,
which are driveways that allow vehicles to get in and out
of the managed regions and the parking lot. Vehicles are
forbidden to stop inside a shared region. A managed region
can only connect to shared regions but not another managed
region. A shared region can connect to managed regions or
external regions—the area outside the parking lot (the yellow
regions in Fig. 1)—but not another shared region.

Managed regions are controlled by regional managers,
which implement a parking strategy that decides how ve-
hicles are parked inside the managed regions. Note that a
regional manager can manage one or more managed regions,
but a managed region can only be managed by one regional
manager. Let R(7) be the set of managed regions managed
by a regional manager m. Vehicles in external regions are
managed by gate managers, which control when a vehicle
can enter or leave the parking lot. There is one gate manager
for each external region.

B. Queue Groups and Stack Groups

Queues and stacks are the two parking strategies proposed
in the previous works. Both of them are suitable for lining
up vehicles with nonholonomic motions. Queues arrange ve-
hicles in a first-in-first-out (FIFO) manner such that vehicles
enter at one end and leave from the other end. The drawback
of queues is that the two ends of a queue cannot be blocked
by walls or obstacles. Stacks organize vehicles in a first-in-
last-out (FILO) manner and require one open end only.

We combine two or more queues to form a queue group.
For instance, in Fig. 1, Ry and R, form a queue group.
Let R(w) = (R1, Ra,..., R,) be the sequence of regions
managed by a queue manager 7, where R; and R,, are the
head and the tail of the queue group, respectively. Vehicles
in a queue group can move from one region to another, such
that the first vehicle v in R; can move to the end of R; 1
(or R, if i = 1), for 1 < ¢ < n. In a rotation operation,
the first vehicle in R; moves to the end of R,,. The success
of a rotation operation depends on the movement of other
vehicles in the queue group. A vehicle v cannot leave a queue
group if it is not the first vehicle of any queue R;. Hence,
we need to apply the rotation operation to relocate v such
that it becomes the first vehicle of some queue. The regional
manager of a queue group is called a queue manager.

Similarly, we can combine several stacks to form a stack
group. In Fig. 1, {R3, Ry4,...,Rg} is a stack group. In a
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Fig. 2: Collision detection via a reservation system. The blue
areas around the vehicles are safety buffers in which no other
vehicle shall present at any time.

relocation operation, the stack manager asks a vehicle to
move to another stack to give way to another vehicle below
it. The regional manager of a stack group is called a stack
manager.

Unlike most existing works on HDP, APL does not have
a fixed-size parking space for every vehicle. Vehicles of
different lengths can park “bumper-to-bumper” in the same
managed region, as long as they maintain a minimum dis-
tance called the car gap (i.e., 10 cm) between them.

C. Reservation Handlers for Shared Regions

Vehicles enter or leave managed regions via shared re-
gions. As many vehicles can use a shared region at the
same time, we need a way to coordinate vehicles in shared
regions. APLs use a reservation system similar to Au-
tonomous Intersection Management (AIM) [9] for vehicle
coordination and collision avoidance in shared regions. In
AIM, an autonomous vehicle v has to reserve a block of
space-time in an intersection before entering the intersection.
The reservation is administrated by a reservation handler,
which divides the area in an intersection into a grid of files
(i.e. grid cells). When v approaches an intersection, the IM
uses the data in the reservation request regarding the time and
velocity of arrival, vehicle size, etc., to simulate the intended
trajectory of v across the intersection. At each simulated time
step, the IM determines which tiles will be occupied by v
and v’s safety buffer. If these tiles have no conflict with
the reserved tiles, the reservation succeeds and the tiles will
be reserved for v; otherwise, the reservation request will be
rejected (see Fig. 2). After that, v can use the reserved tiles
to pass through an intersection safely. We also adopt this
reservation system for managing vehicles in shared regions.

Every shared region has a reservation system controlled
by a reservation handler (RH). Before a manager sends a
vehicle to a shared region R, it submits a request to the RH
of R. A request is a tuple (¢,v,7,T), where v is a vehicle,
t is the time v plans to enter R, 7 is the manager, and T' =
((t1,71), (t2,72), ..., (tk, Tk)) is the list of space-time tiles,
meaning that v needs to reserve 7; at time ¢;. At every time
step, a RH collects a list of requests from the managers of the
adjacent regions. The RH processes the requests according to
Algorithm 1. The RH stores the requests in a list of request
queues: Qios Qrot1s ---» Qio+1, Where g is the current time
and T is the time horizon the RH would consider. Then the
RH looks at (¢, and accept some requests in (), and reject
the remaining requests. First, the RH calculates the priority

Algorithm 1 The reservation handler of a shared region R.

1: procedure ReservationHandler(R)

2:  while True do

3 Let o be the current time step

4: Receive requests from the managers of the adjacent regions
5: Store the requests in the request queues: Qy, ..., Qio+T
6: while )¢, is not empty do

7 Calculate the priority f(r) for all request 7 in Qv

8 Randomly choose r = (to, v, m,T) € Qq, based on f(r)

9: if some tiles in 7" have been reserved then reject r

10: else

11: Reserve the tiles in 1" for v and accept r

12: Remove requests that involve v in the request queues

Algorithm 2 The simple regional manger 7.

1: procedure SimpleRegionalManager ()

2:  while True do

3 for all request rP*™* = (¢, v) for parking in R(7) do

4 if there is enough space in R(7) to hold v at time ¢ then
5: if gridlock check ok then accept P else reject 7P
6: else

7 Reject Pk

8: for all r'"P* = (1, ¢) for leaving the parking lot do

9: Mark v as “leaving from exit e”
10: for all vehicle v marked as “leaving from exit ¢” do
11: Move v to an exit €' of R(m) that can reach e
12: if v has arrived at ¢’ then
13: Send a request 7"**™® to the RH of the shared region

R connecting €’ to e, where to is the current time.

14: Send r*" = (v, e,t’) to the gate manager of e
15: if both 7***™ and r**"* are accepted then
16: v leaves R(m) and enters R.

of every request r = (t,v,7,T) in @4, using this equation:
f(r) = w(r) x etest(™), (1)

where (1) tast(7) is the time passed since the manager 7’s
last request was accepted by the RH, and (2) the value of
w(r) depends on the type of request r. The requests for the
vehicles leaving the parking lot will have the largest value
of w(r), whereas the requests for the vehicles entering the
parking lot will have the smallest value of w. As discussed
in [13], the use of the priority function can prevent some
vehicles from failing to enter an intersection indefinitely. The
same is true for APLs as long as the managers keep sending
requests to the RH after rejection.

After computing the priority of the requests in (),, the
RH randomly select a request r = (t,v, M,T) € Q.
and the chance of choosing a request is proportional to the
priority. The RH rejects r if any tile in 7" has been reserved
previously; otherwise, the RH will accept r and let v enter the
shared region at time ¢ by reserving the tiles in 7" for v. Since
v has been accepted, the RH will remove all requests that
involve v from the request queues. The above steps repeat
until all requests in )¢, have been either accepted or rejected.

D. Communication Protocols between Managers

Requests received by RHs are generated by gate managers
or regional managers, which also accept requests from other



Algorithm 3 The gate manager for an external region R,

1: procedure GateManager(R™")

2:  while True do

3 for all request 7°™**" = (v, e) to enter the parking lot do
4: D := FindManagedRegionEntry(v, e, R®")

5: if D is empty then reject 7<"*°"

6 else

7 for all (e, R,e’,m) in D in a random order do

8: Let S1 = {(e, R,¢')} be the driving scenario in R
9: Let S> be the set of required driving scenarios in M
10: Ask v whether it can handle all scenarios in S1U.S>.
11: if v can handle all scenarios in S; U S> then

12: Compute the set T' of tiles going from e to €

13: Let t’ be the last time step of T’

14: Send r1 = (t,v,m, T) to the RH of R

15: Send r2 = (t',v) to the regional manager of €’
16: if both r; and r2 are accepted then

17: Accept ™" and v enters the parking lot to e’
18: break

19: Reject 7¢*¢"  // v cannot enter at this time
20: for all request 7" = (v, e, t) to leave the parking lot do
21: if the exit e is not blocked at time ¢ then accept r*"*
22: else reject 7"

23: procedure FindManagedRegionEntry(v, e, R®)
24:  Let R be the shared region adjacent to R®* through entry e

25: D:={}

26:  for all regional manager 7 adjacent to R do

27: if v can fit inside R(w) according to the spec of v then
28: for all entry €’ of R(w) that is also on OR do

29: D:=DuU{(e,R,¢e,m)}

30:  return D

managers. In this section, we describe the communication
protocols between different managers and RHs.

Algorithm 2 describes the behavior of regional managers
such as queue managers and stack managers. These managers
can receive a request 7P = (¢,v) to park a vehicle v at
time ¢ from other managers. They can also receive a request
runPark — (1 ¢) to leave the parking lot via exit e from a
vehicle in the regions they manage. These managers decide
whether they accept 7P according to the space availability
and some gridlock conditions that will be described in
Sec. IV. rU"Pak is handled by moving the vehicle v to an
exit ¢’ of the managed regions such that v can reach the exit
e via a shared region R. Then the regional manager sends a
request to the RH of R repeatedly and sends a request 7t
to the gate manager of e repeatedly until v can enter R so
as to leave the parking lot through e.

Gate managers are more complicated than the simple
regional managers since they have to decide which managed
region a vehicle should park. Algorithm 3 describes how a
gate manager works. When a vehicle v arrives at an entry e, it
will repeatedly send a request r¢**¢" to the gate manager of e.
The gate manager will then identify the set of regional man-
agers who can hold v according to the vehicle’s specification
(Line 27). At this point, the regional managers only concern
with the physical dimension of v (e.g., whether v is too wide
to fit in a stack). Besides, v has to be able to reach one of
these managed regions’ entries from e. For each reachable
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a queue group.

regional manager 7 found by FindManagedRegionEntry(),
the gate manager will compile a list S of driving scenarios
in R(m) as well as the driving scenario in the shared region
R through which v goes from e to an entry e’ of R(7). Each
driving scenario consists of a start pose and an end pose of a
vehicle, and some physical constraints such as the boundary
of the driveway, the speed limit, etc. The gate managers will
send the list of driving scenarios to v and ask whether it can
go to the end poses from the start poses without violating
any constraints in the scenarios (Line 10). If v can handle
all scenarios, the gate manager computes the set 71" of tiles
on v’s trajectory and send a request to 7 and a request to
the RH of R. If both requests are accepted, v enters the
parking lot. A gate manager always accepts an exit request
7% = (v, e,t) unless the exit e will be blocked at time ¢.

IV. GRIDLOCK PREVENTION

In this section, we present the condition under which no
vehicle will get stuck in an APL forever.

A. 1-Cyclability of Queue Groups

Fig. 3 shows a gridlock in a queue group. Suppose v3
needs to leave the parking lot. v; and v, have to move to
R5 so that v3 can leave. First, vy cannot move to Ry since
there is not enough room in R,. Second, if we move v, and
vg simultaneously such that Ry has enough room to hold
vy after vg leaves Ro, the total length of 19, v3, vy, v5 and
Vg, together with the car gaps between them, exceeds the
length of R;, and vg cannot join R;. Therefore, v3 can never
leave the queue group and gridlock occurs. To prevent such
gridlock, the queue manager has to check some conditions
before adding a vehicle to its regions. Here we present two
such conditions, both of them can guarantee gridlock-free of
queue groups. But only one of them constitutes the sufficient
condition of gridlock-free APLs in Sec IV-C.

Let V be a vehicle sequence (v1,vs,...,V,) on a queue or
a stack. We define the length of V as |[V|| = {}°, o), [V|} +
(IV| = 1) X lgap, where |v| is the length of v, |V| is the
number of vehicles in V, and [g,, is the car gap. Let V; © Vs
be the vehicle sequence after appending Vs, to the end of
V1. Let V; © Vs, be the vehicle sequence after removing
all vehicles in V, from V;. Let head(V) and tail(V) be
the first vehicle and the last vehicle in V, respectively. Let
rotate(V) = V © (head(V)) @ (head(V)) be the vehicle
sequence after applying the rotation operation—moving the
first vehicle of V to the end. Let rotate®()) be the vehicle
sequence after applying the rotation operation k times to V.



Algorithm 4 The 1-cyclability checking algorithm.

: procedure is1Cyclable(v, V), )
/I v is a new vehicle. V is the vehicle sequence in R(m).
for i =1 to |V| do
if not isMaximallyAssignable() @ (v, head(V)), m) then
return False
V := rotate(V)
return True

A S ol

: procedure isMaximallyAssignable(V, )

9: LetR(ﬂ'):<R1,R27...,Rn>;i22 1L,V = <>
10: for all v € V do

11: if ||V @ (v)|| < [|R:|| then

12: Vi=V; P <l/>

13: else

14: ir=i4+1; V=)

15: if 7 > n then return False

16:  return True

Algorithm 5 The greedily relocatability checking algorithm.

1: procedure isGreedilyRelocatable(v, )

2:  /l v is a new vehicle. R(7) = {R1, Ra,...,R.}

3: Let V; = Vi © (head(V;)) where V; be the vehicles in R;
4: fori=1to V| do _
5: if not isGreedyRelocatableOfOneStack();) then
6 return False

7:  return True

8

: procedure isGreedilyRelocatableOfOneStack();)
9: fori=1tondoV:=V;
10:  for all v € reverse(V;) do  // V; in the reverse order
11: Find J = {j1,..., jm} such that ||V} & (v)]| < ||Ry, |
12: if (J\ {¢}) is empty then return False
13: Find j € (J \ {i}) such that ||V}|| is minimum.
14: Vi =V & (v)
15:  return True

Definition 1 (Maximal Assignment): Given a sequence of
queues R(m) = (Ry, Ra, ..., R,) managed by =, a maximal
assignment of V to the queue group, denoted by maximal(V),
is a partition (V1,Va,...,V,) of V, such that (1) ||V;|| <
[|R;||, where ||R;|| is the length of R;, for 1 < i < n, and
(2) there exist k such that ||V; & (head(Vi1+1))|| > || R;]| for
1<i<k<mnandV; = () (ie., an empty sequence) for
k<j<n.

In other words, a maximal assignment puts as many vehi-
cles as possible to the queues R;, Ro, ..., R;_1, and then put
the remaining vehicles in Ry but leave Rj1, Rx42,..., R,
empty. A maximal assignment maximal()’) does nor exist if
k does not exist—i.e., after assigning as many vehicles as
possible to Ry, Ro, ..., Ry, there are still some vehicles left
that cannot be assigned to any queue.

Definition 2 (Cyclability): Given a sequence of queues
R(r) = (Ri1,Ra,...,Ry) in a queue group managed by
m, a vehicle sequence V is cyclable in R(w) if and only if
maximal(rotate’(V)) exists for all 0 < i < |V)|.

If V is cyclable in R(7), it means that no matter how
V rotates, it is still possible to partition ) and assign
each partition to each queue without exceeding the queues’
capacity. Hence, if the sequence of all vehicles in R(w) is
cyclable, there is no gridlock in the queue group.

A queue manager m can decide whether it should accept
a request to park a vehicle v in its queue group by checking
whether the vehicle sequence in the queue group remains
cyclable after adding v. More precisely, suppose 7 receives
a request to park v in the queue group (R;, Ro,..., R,) at
time ¢. Without loss of generality, 7 plans to add v to the
end of R,,. Let V; be the vehicle sequence in R; at time
tforl <i<n. LetV =&,V be the sequence of
all vehicles in the queue group before adding v to R,,. If
V @ (v) is cyclable, then 7 should accept the request.

However, there is a catch. Even if V is cyclable in a queue
group, it may require several vehicles to move from one
queue in R(m) to the next queue simultaneously to avoid
gridlock. This simultaneous movement can potentially lead
to gridlocks in the shared regions, as we shall discuss in
Sec. IV-C. Therefore, we opt for a stronger notion of cycla-
bility called /-cyclability, which only requires one vehicle to
use a shared region at a time.

Definition 3 (1-Cyclability): Given a sequence of queues
R(m), a vehicle sequence V is I-cyclable in R(w) if and
only if maximal(rotate’()) & (head(rotate’())))) exists for
0<i<|V].

If V @ (head(V)) is cyclable in R(7), it means that the
first vehicle in V can always move to the end of R,, without
requiring some vehicles in R,, to move to R,,_1. Then there
are enough room for some vehicles to move from Ry to
Ri, and then from R3 to R,, and so on. This rotation
operation can proceed by moving one vehicle at a time.
To avoid gridlock, 7 check whether V & (v) is 1-cyclable
before accepting the request to add v to the queue group.
Algorithm 4 is the pseudocode of the algorithm for checking
1-cyclability. A queue manager is 1-cyclable if it maintains
1-cyclability at all time.

B. Greedily Relocatability of Stack Groups

A stack group does not suffer from gridlock if there is
enough room in the adjacent shared regions to hold the
vehicles that need to move temporarily. For example, in
Fig. 4, if vqo requests to leave the stack group, 117 and
v12 can move to shared region temporarily and then return
to Ry after v1o left. However, shared regions are shared
resources, and they should not be used to hold vehicles
temporarily. Therefore, we prefer relocating vehicles to other
stacks instead. Unfortunately, v41; and v1o in Fig. 4 cannot
relocate to other stacks due to the lack of space in the stack
group. Therefore, we want to guarantee that at any moment,
a stack group has enough space for relocation in the worst
case, such that the situation in Fig. 4 would not occur.

Let us state the condition of this guarantee precisely. Let
R(r) = {R1,R2,...,R,} be the regions managed by a
stack manager m. Let V; be the sequence of vehicles in
stack R;, for 1 < ¢ < n. Let head(V;) be the vehicle at the
bottom of stack R; if the stack is not empty. Let V=V, 0
(head(V;)) be the vehicle sequence above head(V;). V; is re-
locatable if there is a partition {V[, ..., V| |, V] ,...,V}}
of the set of vehicles in V; such that [|V; @ Vj|| < [|R;]| for
1<j<nandj#i.
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Definition 4 (Relocatability): The vehicles in a stack
group {Ry, Ry,..., R,} is relocatable if and only if V; is
relocatable for all V;, the vehicle sequence in R;, 1 <17 < n.

However, it is difficult to check the condition in the
above definition because the problem of finding a partition
for V; subsumes the bin packing problem, a famous NP-
hard problem. Therefore, we opt for a stronger version of
relocatability called greedily relocatability, which always
relocates a vehicle to a stack with the largest empty space. It
is cumbersome to define greedily relocatability mathemati-
cally; instead, we present Algorithm 5 for checking greedily
relocatability. A stack manager can use Algorithm 5 to
check whether greedily relocatability can be maintained after
adding a vehicle. A stack manager is greedily relocatable if
it maintains greedily relocatability at all times.

C. Sufficient Conditions for Gridlock-free APLs

Gridlock-free is an important property for APLs because
all vehicles in an APL should be able to leave the parking lot.
Our previous work on AIM provides the sufficient condition
under which an autonomous traffic network with multiple
intersections will be live (i.e., gridlock-free) [14]. But the
condition is inapplicable to APLs. The following theorem
states a sufficient condition for gridlock-free APLs.

Theorem 1: If (1) all reservation handlers are fair, (2) all
queue managers are 1-cyclable, and (3) all stack managers
are greedily relocatable, the APL is gridlock-free.

Sketch of Proof. We assume (1) all vehicles in the parking
lot will eventually request to leave the parking lot, and (2)
the exits will not be blocked indefinitely. We say the RH of a
shared region R is fair if all managers adjacent to R have a
chance to use R if the managers repeatedly send requests to
the RH of R—i.e., no request will be denied indefinitely. A
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traveled inside a parking lot, versus the

parking lot’s length.

RH of R that uses Eq. 1 to prioritize requests can guarantee
that the RH is fair because the priority of denied requests
will grow exponentially so that these requests will eventually
have the highest priority. Since all vehicles in R will leave
R, the RH will eventually be able to reserve tiles for these
requests. Moreover, since all vehicles will eventually leave
the parking lot successfully as no exit will be blocked forever,
eventually there will be one managed region that can accept
the vehicles or one exit that the vehicle can leave. Hence, all
requests to a RH will eventually be accepted if the managers
sent them repeatedly.

If all queue managers are 1-cyclable and all stack man-
agers are greedily relocatable, there is no gridlock in the
managed regions. More importantly, these managers can
achieve gridlock-free by sending vehicles to shared regions
one at a time. Hence, there are no two requests to the
RHs that depend on each other. The lack of dependency
of requests guarantees that the requests to the RHs will
eventually be accepted due to the fairness of the RHs. Thus
the managed regions will continue to be either 1-cyclable or
greedily relocatable. In summary, all vehicles can eventually
park in the parking lot and then leave the parking lot. Hence,
the APL is gridlock-free. g

V. EXPERIMENTAL EVALUATION

We conducted a preliminary experiment to compare au-
tonomous parking lots with conventional parking lots. Our
hypothesis is that autonomous parking lots will be more
space-efficient, but vehicles will take a longer time to leave
the parking lots. Our experiments were based on a C++ sim-
ulator we developed. The GUI was implemented in PyGame
2.0 and connected to the simulator via gRPC. Fig. 5 showed
the three parking lots we implemented in the simulator: a



conventional parking lot, an APL with stack groups only, and
an APL with queue groups only. For a fair comparison, the
dimensions of these parking lots are the same. The parking
lot’s width is 84 m, but the length of the parking lot varies
from 48 m to 96 m, excluding the shared region on the
left. Then we fit as many stack groups and queue groups as
possible in the parking lot. There are one entry and one exit.
The sizes of vehicles are random, but the maximum length
is 4.8 m, and the maximum width is 2.4 m. The vehicles’
kinematic model is based on the unicycle model, which offers
simplified car-like vehicle dynamics. In this model, the set
of differential equations for nonholonomic motion are:

% = v-cos(d), % = v-sin(¢), % =v- tazw,
where (z,y) is the position of the center of the front of a
vehicle, ¢ is the direction of the vehicle, and L is the length
of the vehicle’s wheelbase. The position and the direction
depend on the steering angle 1) and the velocity v.

We set the vehicle’s spawn rate at the entry to a large value
such that vehicles will keep trying to enter the parking lot.
Vehicles will randomly choose to leave the parking lot at any
moment, but the probability of leaving is much lower than
the spawn rate. Hence the parking lot will eventually be full.
After that, we start to measure three performance metrics: (1)
the average number of vehicles in a parking lot at any time
step, (2) the average time a vehicle takes to exit a parking
lot after it decides to leave, and (3) the average distance
a vehicle travels after it enters a parking lot and before it
leaves. We plotted these performance measures against the
parking lots’ length, as shown in Fig. 6-8.

Fig. 6 confirmed our hypothesis that autonomous park-
ing lots are more space-efficient—about 60% more space-
efficient than the conventional parking lot when the parking
lot’s length is 96 m. The queue groups were not as space-
efficient as the stack groups when the parking lot’s length
is small, because the queue groups require more space for
vehicles’ U-turns. As the parking lot’s length increases, the
queue groups eventually became as space-efficient as the
stack groups. Unsurprisingly, Fig. 7 and 8 show that the
vehicles in the conventional parking lot took less time to
exit the parking lot, and they do not move too much inside
the parking lot. The vehicles in the stack groups take a
much longer time to leave because congestion occurred at
the middle driveway. There was no congestion in APLs with
queue groups only, thanks to the AIM reservation system.
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VI. CONCLUSIONS AND FUTURE WORK

Parking space is a scarce resource in urban environments.
Previous works on HDP showed that we could dramatically
increase parking lots’ capacity by leveraging autonomous
driving. However, most existing works have not considered
mixing different parking strategies, ignored the gridlock
issue, and assumed all vehicles occupy the same amount
of parking space. This paper addressed these issues and
presented a new gridlock-free autonomous parking lot design
for HDP. The key ideas are (1) different regions in a parking

lot are managed by different management agents, and (2)
utilizing a reservation system for managing traffic between
the regions. Our parking lot design can fit both stacks and
queues, the two common parking schemes in HDP, into a
parking lot. Our experiment confirmed a 60% increase in
parking lots’ capacity as suggested in some previous studies.
However, we also showed that the debate about whether
stacks are better than queues is far from over.

In the future, vehicles can be quite different from today’s
vehicles. Our parking lot design is feasible enough to accom-
modate other kinds of managed regions that accept robots
with different motion constraints. Thus, our APLs could be
used as a robot storage system for autonomous mobile robots.
Moreover, we intend to figure out the best configuration of
managed regions for a very large autonomous parking lot.
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